
Annual Report 2004 Selected Results

HMI-B 602

†11111

Legend to Cover Figures:

top left:	Nano-towers produced by fast-ion irradiation in a thin NiO-layer deposited on a SiO_2 substrate.	
	The towers have diameters of approx. 200 nm and heights of 1 µm. For details see p. 43.	
top right:	The three major steps to a poly-Si thin-film solar cell on glass	
	(substrate - seed layer - epitaxy and cell processing)	
bottom left:	Surface morphology of laser crystallized poly-SiGe	
bottom right: Low-temperature structure of NH ₄ CuCl ₃ .		
	The interesting magnetic properties of this compound were investigated at HMI in 2004.	

Annual Report 2004 Selected Results

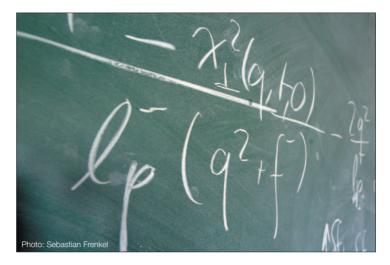
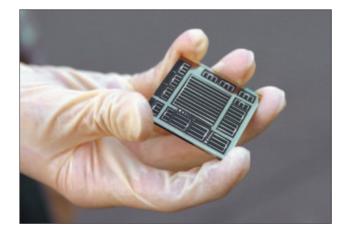

Hahn-Meitner-Institut Berlin, 2005

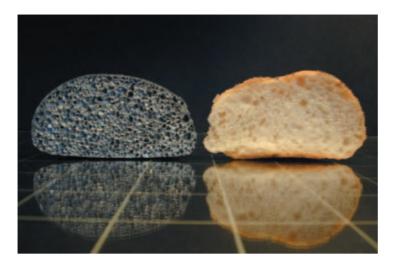
Table of contents

4	Foreword
6	HMI in brief
8	News and Events 2004
10 10 10 11	People Two theorists leave HMI to take over professorships outside Berlin Solar cells pioneer at SE3 New head of Department Magnetism
12	New Neutron Guide Hall
14	Meetings and Workshops
19 19 20 20 21	Technology TransferNew application centre for industrial cooperationHahn-Meitner-Institut operates neutron scattering instrument in MunichContributing to the progress in proton therapyTechnology transfer prize goes to solar cell researchers
22 22 23 24 24	Public RelationsHMI's school lab inauguratedHMI opens its doors to the publicGirls' Day 2004Christoph Böhme receives Hahn-Meitner-Institut's Communicator Prize
25 25	Instrumentation News First experiments at the 7 Tesla Wiggler beamlines
26	User Service
28 31 32	BENSC Operation NAA Laboratory and Irradiation Service at BER II ISL Operations and Developments
34	Scientific highlights Structural Research 2004
36 36 38 40 42	 BENSC User Service Magnetisation plateaus in the quantum magnet NH₄CuCl₃ Does antiferromagnetism survive in the superconducting phase of CeCu₂Si₂? Tailoring surface coatings for protein immobilization Structural explanation of the magnetoelectric phase transitions in HoMnO₃
44 44 46	 ISL User Service Nanoscale self-assembly of thin oxide films under swift heavy ion bombardment 10 years of materials analysis with heavy ions at ISL
48 48	 NAA User Service Investigation of heavy metal release during thermal waste treatment on a forward-acting grate using radiotracers irradiated at BER II
50 50 52	 SF1, Methods and Instruments Ordering upon melting dynamically enhanced Search for scission neutrons using angular correlation method


54 54 56	 SF2, Magnetism Superconductivity? Just add water! Competition of two AF structures in UNiAI single crystal
58 58	 SF3, Materials Metal foams
60 60 62 64	 SF4, Structure and Dynamics Magnetic anisotropy of Ni changed by extreme lattice expansion Texture modification in nanocrystalline materials using swift heavy ions Electronic energy-density effects in Auger angular distributions
66 66 68	 SF5, Theoretical Physics Melting of orientational order of colloidal molecular crystals on a triangular lattice Force transduction in stiff polymers
70 70	 SF6, Molecular Trace Element Research in the Life Sciences Synchrotron light helps to elucidate the role of metalloproteins in health and disease
72 72 74	 SF7, Nuclear Measurements 25 years of the magnetic spectrometer Q3D Chain states in ¹³C and ¹⁴C, nuclear polymers
76	Scientific highlights Solar Energy Research 2004
78 78 80	 SE1, Silicon Photovoltaics Laser-induced self-organization in Si-Ge alloys Numerical simulation of thin-film hetrojunction solar cells: open-source program AFORS-HET, version 1.2
82	Low-temperature Si epitaxy on polycrystalline Si seed layers on glass for thin-film Si solar cells
84 84	 SE2, Heterogeneous Material Systems Compositional and electronic characterisation of Zn(O,OH) by PES for a better understanding of interfaces in chalcopyrite solar cells
86 88	 Time dependent charge separation in a nanoporous TiO₂ model system studied by surface photovoltage Electrical activity at grain boundaries of Cu(Ga, In)Se₂ thin films
90 90 92 94	 SE3, Technology Production of CuInS₂ baseline modules on 5×5 cm² substrates with high yield Thin film photovoltaics: diagnostics and repair Prototype development – flexible high efficiency Cu(In,Ga)Se₂ thin film solar cells for space applications
96 96 98 100	 SE4, Dynamics of Interfacial Reactions Hot electrons at the interface of p-InP Ultrafast electron dynamics measured with femtosecond two-photon photoemission Improved structure and performance of the InP/GaAsSb interface in a resonance tunneling diode
102 102	 SE5, Solar Energetics Reactive magnetron sputtering of CuInS₂: a new prospective deposition method for thin film solar cells?
104 106	 Surface passivation of MoS₂ or WSe₂ for optimised photoconversion efficiencies Polymer electrolyte membrane (PEM) fuel cells: new catalysts and bionic aspects
108 108 110	 SE6, Electronic Structure of Semiconductor Interfaces Spectromicroscopy: investigating the ALILE process Band structure and effective masses for CuInS₂
112	Organizational Chart
113	Imprint

Foreword

With the Annual Report 2004 of the Hahn-Meitner-Institut, we again can present only a selection of highlights out of a large number of results. Still, we hope to help the interested


reader to get an idea of the breadth and high quality of the Institute's research. Intentionally, we present results achieved by both the scientists employed at the Hahn-Meitner-Institut and the users of our facilities. It is the intimate interplay of in-house and collaborative research, which is the backbone of the top-science produced in the Hahn-Meitner-Institut.

For HMI and the entire Helmholtz Association, 2004 marked the completion of the new – programme-oriented – funding system. With Structure of Matter and Key Technologies the programmatic strategies of the remaining two out of six Helmholtz research fields were peerreviewed. From 2005 on, the entire Helmholtz Association is funded according to the new scheme.

For Hahn-Meitner-Institut, the large-scale facilities and the major part of its division Structural Research were evaluated and the proposed programme for the period 2005–2009 got very good marks. This includes a strong support for our project N25T, to build a high- T_c -superconductivity based magnet to provide a 25 Tesla sample environment for neutron scattering experiments.

Our delight was, however, seriously damped by the recommendation, due to lacking resources and despite its scientific success, to close the lon Beam Laboratory ISL before 2008, and to concentrate the resources on the structural research with neutrons and synchrotron radiation. Meanwhile, the deciding bodies of Helmholtz and Hahn-Meitner-Institut confirmed the shut down of ISL by the end of 2006, and we started the difficult process to realize this decision for the benefit of the future potential of the institute.

We are happy that with Dr. Schock and Prof. Tennant we could welcome two new distinguished colleagues now heading the departments SE3 (*Technology*) and SF2 (*Magnetism*), respectively. The search for the new heads of departments SE1 and SF4 is well on the way.

On the other hand, we have to announce that Prof. Frey, head of the department SF5 (*Theoretical Physics*) left Hahn-Meitner-Institut to join the LMU Munich. We will do our best to assure a continuation of the activities he started at the Hahn-Meitner-Institut over the last years.

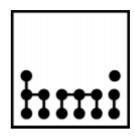
We hope that with this Annual Report 2004 we can communicate that thanks to the very high motivation of all the staff at Hahn-Meitner-Institut and the guests and collaborators from outside 2004 was a scientifically very successful year for HMI, too. This motivation is most gratefully appreciated.

Thanks go also to the funding authorities, the Federal Government, in particular the Federal Ministry of Education and Research (BMBF), the Senate of Berlin and all the third party funding agencies for their continuing support. By no means diminishing the difficulties due to the shut down of ISL, we are confident that the scientific achievements together with our programmatic strategy and the competence of our staff are an excellent basis for the future of the Hahn-Meitner-Institut and its standing in the community.

Michael Steiner Scientific Director

IHMI in brief

The **Hahn-Meitner-Institut** (HMI) in Berlin is one of Germany's leading centres for research on solar energy conversion, condensed matter and materials science. It has approximately 800 employees, including almost 300 scientists – most of them physicists and chemists. Most of the institute's annual budget of roughly 70 Million € is provided by the German Federal Government and the City of Berlin in a ratio of 9 to 1.


The Hahn-Meitner-Institut is member of the Helmholtz Association of National Research Centres, an organisation representing fifteen of Germany's largest scientific institutions. The common mission of the Helmholtz centres is to develop, set-up and operate large-scale facilities, to solve complex - often multidisciplinary scientific and technological problems in longterm proactive research programmes and to develop high technologies for the future. The Helmholtz Association concentrates its work in six research fields: Energy, Earth and Environment, Health, Structure of Matter, Transport and Space and Key Technologies. For each of these fields, scientists develop several research programmes for 5-year periods. These programmes are then evaluated by a group of international experts. This evaluation forms the basis for the programme-oriented funding, which distributes the financial resources to the scientific programmes of the Helmholtz research fields rather than to the institutes.

Scientific work at the Hahn-Meitner-Institut is organised in two divisions reflecting the two main fields of activity: Solar Energy Research and Structural Research. The Solar Energy Research is part of the programme *Renewable Energies* within the research field *Energy*. Most of the activities of the Structural Research Division are part of the programme *Large-Scale Facilities for Research with Photons, Neutrons and lons* in the research field *Structure of Matter*. The eye tumour therapy and the research on trace elements are conducted in the Helmholtz programmes *Cancer* and *Environmental Health* within the research field *Health*.

Solar energy research at the Hahn-Meitner-Institut is the largest effort in the field of sustainable energy within the Helmholtz Association and comprises approximately 25% of HMI's research and development efforts. As an interdisciplinary activity between solid state physics, material chemistry, optics and interfacial chemistry, it aims at creating scientific and technological preconditions for significantly increasing the contribution of sustainable energy to our energy supply over the next decades. This activity is taking advantage of an already well balanced research infrastructure and increasingly uses the unique measurement opportunities provided by the large scale facilities operated at the Hahn-Meitner-Institut.

At the centre of the solar energy research at HMI are materials and concepts for thin-film solar cells - activities covering the entire spectrum from basic research to the design of actual devices. The focus is on the currently most promising technologies, namely thin-film polycrystalline silicon and compound semiconductors of the I-III-VI₂ and III-V type. Research projects aim at the development of efficient photovoltaic solar cells which allow substantial reductions in the costs of solar power generation. The strategy is to develop existing thin-film technologies to a state of maturity and, in parallel, to explore new materials and concepts for solar cells of the future, e.g. nano-composite crystalline materials.

All facilities are primarily operated for a national and interna-

tional user community. About 70% of the beam time at the instruments is used by scientists from other research institutes, universities and industry from Germany and from abroad. It is HMI's policy to provide these users with full scale technical and scientific support, this way enabling them to make best possible use of the facilities. An outstanding highlight among the HMI activities are neutron scattering studies of samples in extreme sample environments such as very high magnetic fields and extremely low temperatures made possible by the institute's unique expertise on sample environment equipment.

At ISL, roughly a quarter of the beam time is used for the therapy of tumours in the human eye using $70 \, MeV$ protons. The costs of the therapy are covered by the national health insurance companies.

Fields in the focus of in-house structural research are magnetic phenomena, properties and design of engineering components and materials, soft matter and biological systems as well as theoretical physics.

At the national level, the solar energy research programmes of the Hahn-Meitner-Institut, other Helmholtz centres, universities and other institutions are coordinated within the Solar Energy Research Association (ForschungsVerbund Sonnenenergie – FVS). In addition, the FVS represents the institutions jointly in the scientific, industrial and political communities and acts as a platform for numerous networking activities.

Structural research at the Hahn-Meitner-Institut is focused on experimental investigations of structures and materials using neutrons and fast ions as probes. These two probes are provided by two in-house large-scale facilities sited on the institute's grounds in Berlin-Wannsee: The 10 MW research reactor BER II with the Berlin Neutron Scattering Center BENSC and the accelerator complex of the Ion Beam Laboratory ISL. In addition to that, the Hahn-Meitner-Institut makes use of a third complementary probe – synchrotron radiation – by operating instruments at the 3rd generation electron storage ring BESSY, an independent research institution in Berlin-Adlershof.