

Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin

The 30 x 30 cm² R&D baseline for high efficiency a-Si/µc-Si thin-film modules at PVcomB

B. Rau^{1*}, C. Boit², S. Calnan¹, F. Fink³, K. Frank¹, F. Friedrich², O. Gabriel¹, T. Hänel¹, M. Hartig², S. Kirner¹, D. Kubsch¹, K. Mack¹, S. Neubert¹, S. Ring¹, C. Schultz³,

M. Schüle³, B. Stannowski¹, B. Szyszka², M. Zelt¹, and R. Schlatmann^{1,3}

¹Helmholtz-Zentrum Berlin für Materialien und Energie GmbH / PVcomB, Berlin, Germany; ²Technische Universität Berlin / PVcomB, Germany; ³University of Applied Sciences (HTW) Berlin / PVcomB, Germany ^{*}Corresponding author: bjoern.rau@pvcomb.de

Deposition of tandem stack

ization.

Our Mission

AKT 1600

- 3 chamber PECVD
- cluster tool from Applied Materials for 30 x 30 cm² module size
- In situ diagnostics: OES, RGA, NEED

duced modules and vice versa.

30 x 30 cm² glass modules.

Substrate cleaning

- Commercial low iron glass used as substrates Two step cleaning procedure
- 1. ultra-sonic bath with alkali solution

P3 laser scrib

Encapsulation

2. clean in multistage inline glass washer (brushes and de-ionised water)

Deposition of Front

Automated processing: up to 8 tandems/day

- Laserscribing Joint laser lab of HTW and PVcomB.
- High performance laserscribing tool from **Rofin Baasel Lasertech**
- Laser sources with pulses at µs (1063 nm), ns (532 nm) and ps (1064, 532 & 355 nm) timescale.

see 3.CV.1.6/3.CV.1.34/3.CV.1.42

htuu Hochschule für Technik und Wirtschaft Berlin

(TCO) and Back (TCO/metal) contacts

A600V7

- Inline sputter tool from Leybold Optics Dresden for 30 x 30 cm² module size
- 2 planar & 2 rotatable magnetron positions
- Sixfold carrier magazine/2 substrates per carrier: high throughput & high reproducibility
- . At **PVcomB** state-of-the-art a-Si/ μ c-Si TF modules are developed in a semi-industrial environment, addressing issues such as process stability, throughput, statistics and reliability.
- . At **PVcomB** an excellent basis for cooperation with fundamental researchers as well as industrial partners has been created.
- . **PVcomB** offers an ideal reference for the implementation of new materials, process steps and technologies.

University of Applied Sciences

Advanced analytics for device and process optimization

Wide range of state-of-the-art analytics e.g.

- AAA dual-source WACOM solar simulator
- AAA dual-source h.a.l.m. flasher
- Dual-source EQE with bias-light adapted to $a-Si/\mu c-Si$
- . UV-VIS spectrometry, lock-in thermography (DLIT, ILIT), EL, XRF, ARS, LBIC, Raman, Hall, ...
- 1D/2D/3D device modelling e.g. of light management phenomena

IV characteristics of an a-Si/µc-Si tandem module prepared at the PVcomB baseline.

(aperture area of 27 x 28 cm², 27 cell stripes, glass/glass laminate, DC sputtered ("industrial") ZnO:Al front TCO, no AR coating)

Development of initial conversion cell efficiency of PVcomB's a-Si/µc-Si tandem baseline (best median values). (Front TCO: SnO:F until Juli 2012, then ZnO:Al (by DC sputtering))

www.pvcomb.com

GFFÖRDFRT VOM

