

2nd International Workshop on CIGS Solar Cell Technology, April 12-14, 2011

GW Production in Solar Frontier K.K. : Current Status and Future Prospect

Katsumi Kushiya

Solar Frontier K.K. (and Showa Shell Sekiyu K.K.)

Sincere appreciation for your warm encouragement and strong support to Japan, especially the people in **Tohoku District, who had sudden** change of the life. We would not be beaten by the current tough situation until the ordinary life is back to us.

Current Status

• Future Prospect

Conclusions

SOLAR FRONTIER Showa Shell Sekiyu Group

SOLAR FRONTIER Showa Shell Sekiyu K.K. with Solar-PV

<u>1978</u>: Start the R&D of Solar-PV system with single crystal Si PV modules.

1988: Kushiya started the CIS research as a visiting researcher of the R&D team in ARCO Solar, Inc. <u>1993</u>: Start the NEDO PV R&D projects on the development of CIS-based thin-film PV technology.

<u>2005</u>: Make a de<u>cis</u>ion on the commercialization with CIS-based thin-film PV technology.

2006: Establish the Showa Shell Solar K.K.

2007: Start the commercial production of CIS-based thin-film PV modules with 20 MW/a in Miyazaki.

2009: Open the Atsugi Research Center.

2010: Change the company name to Solar Frontier K.K.

<u>2011</u>: Will start the mass-production of CIS-based thin-film PV modules in the 3rd plant of 900 MW/a, which means Solar Frontier will be a company with one GW/a production capacity.

- It was done to be a company with two energy sources, oil and Solar-PV.
- It will be on the way to be a company on the net profit by FY-2014, 50 billion yen by <u>Oil</u> business and 50 billion yen by <u>Solar-PV</u> business.

Solar Frontier K.K. is the company exclusively manufacturing the CIS-based thin-film PV modules with a <u>Cd-free</u> Zn(O,S,OH)_x buffer layer.

Home page: http://www.solar-frontier.com/

Full operation will be started by mid-2011.

Baseline Process

Packaging: Same technology as Crystalline-Si solar cells

Device Structure

Company	p type Absorber	n type layers	Substrate
Würth Solar	Coevaporation	CBD-CdS	Glass
Solibro	CIGSe ₂	Sputtering-AZO	
Global Solar Energy			Stainless steel foil
Solar Frontier	SAS	<u>CBD-Zn(O,S,OH)_x</u>	Glass
	CIGSe ₂ with CIG(Se,S) ₂		
	Surface layer	MOCVD-BZO	
Bosch Solar	SAS	CBD-CdS	
CISTech	CIG(Se,S) ₂	Sputtering-AZO	
AVANCIS	RTP-Simultaneous Selenization&Sulfurization	CBD-CdS	
	CIG(Se,S) ₂	Sputtering-AZO	
Honda Soltec	Selenization	CBD-In(S,OH) _x	
	CIGSe ₂	Sputtering-AZO	

SOLAR FRONTIER Better position of SAS process

Better position	Reasons
Since <u>highly reactive gas</u> can be used, drastic reduction of Se consumption is possible.	Required Se amount is estimated at about 1/40 of solid Se case. (Excellent materials saving)
Metal precursor layers can be prepared by <u>DC magnetron sputtering</u> , which is a proven technology on the excellent thickness control and high rate deposition. As the result, thinner CIS-based absorber is possible in a controlled thickness range of 1.2 to 1.5 micron.	CIS-based absorber thickness in the commercialization is estimated as at least 0.5 micron thinner than Coevaporated ones. (Excellent materials saving)
End-of-life sputtering targets can be recycled, because of no contamination.	Sputtering targets are in the recycle flow. (Excellent materials saving and cost reduction)
60cmx120cm size is a current standard, but Solar Frontier K.K. will use a 90cmx120cm size substrate in the 900 MW production.	Substrate size will be larger than CdTe, but smaller than a-Si.

R&D in the NEDO Solar-PV R&D Projects

Single cell with Top grids

Monolithically Integrated Circuit

 $\frac{1 \text{ cm}^2}{\text{Test Structure}} \xrightarrow[]{3.2 \text{ cm}^2}$ (16 cells) on 10cmx10cm (100cm²)

 50 cm^2 on $100 \text{ cm}^2 \longrightarrow 80 \text{ cm}^2$ on 100 cm^2

- → <u>10cmx30cm</u> (300cm²)
- → <u>30cmx30cm</u> (1footx1foot, 900cm²)
- → <u>30cmx120cm</u> (1footx4feet, 3,600cm²)

60cmx120cm

(2feetx4feet, 7,200cm²)

90cmx120cm

(3feetx4feet, 10,800cm²)

SOLAR FRONTIER Improvement of Output: Reality

Period	Rated Pow on <u>Catalo</u>	Miyazaki Plant	
From Apr., 2007 To Apr., 2009	70 75	w/ JET, TUV & UL	No.1
-	80 8	5	
From Sep., 2009		90	No.2
To Today		Export only	
From Apr., 2011	3x4 size		No 3
······································		130 140	110.0
	W/JEI, IUV & UL	<u>150W is coming soc</u>	<u>on</u> .

Marketing Segments

in Miyazaki No.2 Plant

Current Status

Future Prospect

Conclusions

SOLAR FRONTIER Toward the Energy mix era: (*Trend of global primary energy demand*)

Shell's long term scenario – a transition to renewables

Total Product Lifecycle-Chain Control

Their basic understanding is it is necessary to improve the efficiency for <u>mfg cost down</u>.

Production Capacity in 2012

Size	CIS-based/ Glass substrate	CdTe/ Glass substrate
Small-area single cell	• 20.0 % (0.419cm ²) Oct. 2007	• 16.7 % (1.032cm ²) Sep. 2001
(Total-area)	 19.4 % (0.994cm²) Jul. 2008 	Achieved by <u>NREL</u>
	Achieved by <u>NREL</u> , CdS buffer	(Main researchers left the NREL
		started up the venture company,
	 20.3 % (0.5cm²) Aug. 2010 	invested by GF.)
	Achieved by <u>ZSW</u> , CdS buffer	
Large-area (Over 800 cm ²)	 14.2 % (6840cm²) Jun. 2010 	• 10.9 % (4874cm ²) Apr. 2000
module	Achieved by Solibro, CdS buffer	Achieved by <u>BP Solarex</u> , who
(Aperture-area)		trashed their CdTe technology later.
	•15.7% (9703cm ²) Nov. 2010	
	Achieved by Miasole, CdS buffer	
	 13.5 % (3459cm²) Aug. 2002 	
	•17.2 % (819cm ²) Mar. 2011	
	Achieved by <u>Showa Shell Sekiyu</u> ,	
	Zn(O,S,OH) _x butter	

Source: Solar Cell Efficiency Tables (Ver.37), Prog. Photovolt: Res. Appl. 2010 and Press Releases.

Champion Efficiency

Goal for Current NEDO Project is **18%** on $900cm^2(1x1)$, which would be translated into **16%** on $10,800cm^2(3x4)$.

Aperture Area [cm ²]	Efficiency [%]	Output [W _p]	Measured by
819	17.2 * +	14.1	Showa Shell
839	16.3 * +	13.9	Showa Shell
815	15.8 * +	12.9	AIST
3,456	13.6 * +	47.0	Showa Shell
3,459	13.5 * + Certified World Record/ Cd free	46.9	NREL
7,128	13.1 **	<u>93.1</u>	AIST

* Submodule, + NEDO Solar-PV R&D projects),** Module sourced from the production line of Solar Frontier's Miyazaki 20 MW/a plant.

SOLAR FRONTIER **To improve the quality**

Device Structure

Recycle process (Patent pending)

- Collected metal powder or filter cake is shipped to non-ferrous metal companies on a ton base.

- Glass substrates with an Mo base electrode or glass particles are shipped to glass companies as a glass cullet.

- This was confirmed by AGC and contributes to reduce the recycle cost.

PV Market: Three Zones

What we should do is

- 1) to improve the <u>module efficiency</u> in the commercial production.
- to achieve the <u>18% efficiency</u> on a 900cm²-sized substrate in the R&D activities.
- 3) to <u>transfer</u> the R&D technology to the commercial production quickly and smoothly.