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Ultrafast Experimental Approaches

probing multiple length and time scales in matter

X-ray IR/optical/THz
(diffraction, absorption) (nonlinear, multidimensional)
bond distances, angles, vibrational and electronic
coordination geometry, time-dependent couplings,
local electronic structure coherent and incoherent

dynamics
time-evolving structures energy transfer pathways
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Structural dynamics in Solvated Systems
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Photodissociation:

characterizing product states with X-rays



50

40

Molar Abs. (x 10° M'cm™)

?

» Effective photocatalyst for organic
synthesis

* Two known reaction pathways,
catalytic one not well understood
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* Recombination dynamics in other
systems may be too fast for ‘ordinary’
synchrotrons

* Need for picosecond time resolution to
capture dissociated products
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Photochromic Switches:

characterizing intermediate states with unique detalil
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Photoswitch, controlling
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e High quantum yield at 400nm
excitation (little-to-no
geminate recombination)
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 What are the characteristics
of the intermediate state?

» Characteristic reduced
bipyridine absorption (few ps)

 Final state evolution (1ns)
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* Ru(ll) oxidation state with
iIncreased charge

* Precursor state with
elongated bond lengths?
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* Picosecond spectroscopy
would allow characterizing
the initially excited state.

» Characteristic reduced
bipyridine absorption (few ps)

 Final state evolution (1ns)
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Heat Jumps:

beyond UV-vis photo-excitations in solutions
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Vibrational excitations
In pure water thermalize

with a (sub-)picosecond

time constant
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Adjusting to storage rings:

MHz repetition rate experiments
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Considerations

~10% ph / camshaft at sample

101% ph / s & MHz sampling

108 ph / s in short pulse mode

Will transient RIXS work?

PES in pseudo single-bunch mode?

XAS, PES, (RIXS)

l

ps Dynamics in

Materials science
Condensed matter
Magnetism
Surface science
Catalysis

Chemical systems
Gas phase, clusters
Bio molecules
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o) Conclusions

* Plenty of new opportunities to investigate solution-phase chemistry with
various X-ray spectroscopic methods in the soft X-ray range

» Laser technology has matured to the point that widely tunable MHz sources
with 10mJ/cm? fluence are essentially on the market

* Primary challenges:

sample handling, sample amounts, single bunch/MHz-chopper,
continuous MHz-DAQ performance (especially for pixel detectors)

e What do | wish for: 1ps @ 10'ph/s
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