# Fundamentals of Cryomodule

# KEK, High Energy Accelerator Research Organization Norihito Ohuchi

# **Basic Function of Cryomodule**

- 1. The minimum unit in the accelerator components which has an interface with the room temperature.
- 2. Making the work space where the superconducting cavities operate at 2K:
  - Hold the superconducting cavities in the vacuum and thermal insulated environment.
  - Keep the cavities in a good alignment with respect to the design beam line.
  - Have an interface for supplying RF power to cavities between cold and warm components.

# ILC cryomodule overview



# Cryomodule components

#### Vacuum vessel (Iron pipe)

- Outer diameter = 965.2mm, Length=11.8m
- Connection between cryomodules
  - Vacuum bellow
- Total length=12.7m
- Magnetic shielding

#### Support post

- Supporting the all cold mass in the vacuum vessel
- Material: FRP(G-10)

#### Thermal radiation shield

- Aluminum plate + Muti-layer insulation of aluminum-evaporated film (Super Insulation)
- 40K-80K, 4K-5K helium gas cooling



Cryomodule Cross Section

# Cryomodule components

#### • 2K helium gas return pipe (GRP)

- Gas channel for evaporated helium gas
- Inner diameter=300mm
- Material: Stainless steel
- Supporting the cavities and quadrupole
- Superconducting cavity package (8 or 9 for one cryomodule)
  - Liquid helium container, input power coupler, HOM coupler, frequency tuner

#### • Another cooling pipes

- 2K 2-phase helium supply
- 2.2K supply
- 5K forward and 8K return for 5K shield
- 40K forward and 80K return for 80K shield
- Cool down and warm up
- Superconducting quadrupole and beam position monitor
  - Current lead, corrector coils



Cryomodule Cross Section

# Making thermal insulated environment for superconducting cavity





### Heat transfer by thermal radiation

Heat flux by thermal radiation between the coaxial cylinders

$$q = \frac{\sigma A_{1} (T_{1}^{4} - T_{2}^{4})}{\frac{1}{\varepsilon_{1}} + \frac{A_{1}}{A_{2}} (\frac{1}{\varepsilon_{2}} - 1)}$$

σ: Stefan-Boltzmann constant = 5.669×10<sup>-8</sup> W/m<sup>2</sup>• K<sup>4</sup>, ε: emissivity, A: surface area



Thermal radiation model: coaxial cylinder

For example of  $A_1 = 2m^2$ ,  $A_2 = 1m^2$  cylinder T<sub>2</sub>= 2K and 80K, cylinder material=SUS,  $\varepsilon_1 = 0.12$  (T>77K),  $\varepsilon_1 = 0.074$  (T<77K)



SRF2009 Tutorial Program

### Estimated heat load for one ILC cryomodule

|                       | 2K     |         | 5-     | 8K      | 40-80K |         |  |
|-----------------------|--------|---------|--------|---------|--------|---------|--|
|                       | Static | Dynamic | Static | Dynamic | Static | Dynamic |  |
| RF load               |        | 7.5     |        |         |        |         |  |
| Thermal radiation     | 0.0    |         | 1.4    |         | 32.5   |         |  |
| Supports              | 0.6    | 0.0     | 2.4    |         | 6.0    |         |  |
| Input coupler         | 0.5    | 0.2     | 1.5    | 1.3     | 15.5   | 66.1    |  |
| HOM coupler (cables)  | 0.0    | 0.2     | 0.3    | 1.8     | 1.8    | 9.0     |  |
| HOM absorber          | 0.1    | 0.0     | 3.1    | 0.5     | 3.3    | 10.9    |  |
| Beam tube bellows     |        | 0.4     |        |         |        |         |  |
| Current Leads         | 0.3    | 0.3     | 0.5    | 0.5     | 4.1    | 4.1     |  |
| HOM to structure      |        | 1.2     |        |         |        |         |  |
| Coax cable (4)        | 0.07   |         |        |         |        |         |  |
| Instrumentation tapes | 0.07   |         |        |         |        |         |  |
| Diagnostic cable      |        |         | 1.4    |         | 2.8    |         |  |
| Sum                   | 1.7    | 9.7     | 10.6   | 4.2     | 59.2   | 90.1    |  |

From ILC-RDR

# Thermal contraction of the components of different materials in the module

12.7m





Thermal property of cryomodule components

#### Thermal contraction

| Component          | Material | Temp.      | ∆L/L    |
|--------------------|----------|------------|---------|
| Cooling<br>pipes   | SUS      | 300K – 4K  | -0.265% |
| Thermal<br>shields | AL       | 300K – 4K  | -0.368% |
| Support post       | G-FRP    | 300K – 4K  | -0.338% |
| Cavity             | Nb       | 300K – 4K  | -0.129% |
| Cavity jacket      | Ti       | 300K – 4K  | -0.134% |
| Cavity fixture rod | Invar    | 300K – 20K | -0.034% |

### Supporting cavities in the cryomodule

- Cavity jackets are supported from the GRP of \$\$00mm.
- The GRP is supported with three support posts from the vacuum vessel.

Support post is hanged from vacuum vessel.

• The power input couplers are connected between the cavity jacket/beam pipe and the vacuum vessel.

GRP

The input coupler flange is connected to the vacuum vessel.

Pictures by Don Mitchell, FNAL

Cavity package

### Supporting cavities in the cryomodule

- By cooling the GRP from room temperature to 2K
  - Thermal contraction (300k-> 2K) = 0.265%
  - Thermal contraction of 12 m gas return pipe= 32 mm
- The cavities locates in the ends of the cryomodule move over 10 mm without any slide mechanism with respect to the vacuum vessel.
  - Risk of damage of the input power coupler.
  - Requirement of sliding structure for the cavity jacket against the thermal contraction of GRP during cool-down and warm-up.

#### Location change from the module center at 2K

| No. of cavity<br>jacket | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | <b>C</b> <sub>5</sub> | C <sub>6</sub> | C <sub>7</sub> | C <sub>8</sub> |
|-------------------------|----------------|----------------|----------------|----------------|-----------------------|----------------|----------------|----------------|
| Position @<br>300K      | 5693           | 4312           | 2929           | 1547           | 165                   | 1217           | 2599           | 3981           |
| Position @2K            | 5678           | 4301           | 2921           | 1543           | 165                   | 1214           | 2592           | 3970           |
| ΔL                      | 15.1           | 11.4           | 7.8            | 4.1            | 0.4                   | 3.2            | 6.9            | 10.5           |
| $\Delta L_{ln}$         | 1.9            | 1.5            | 1.0            | 0.5            | 0.1                   | 0.4            | 0.9            | 1.4            |

Using an Invar rod for minimizing position change of cavity jackets during cool-down and warm-up.

- Thermal contraction of Invar =0.034%



Support structure of the cavity string

### Supporting cavities in the cryomodule









# Cavity component: input power coupler

- Power coupler
  - Supply RF energy to cavities for accelerating a beam.
  - The power coupler connects directly cold parts to the vacuum vessel at room temperature.
  - Conductive heat load from 300K is removed by thermal intercepts connected with 5K and 80 K shields and cooling pipes.



Heat load of power coupler for DESY cavity (one component)

|             | 80K  | 5K   | 2K   |
|-------------|------|------|------|
| Static [W]  | 1.78 | 0.17 | 0.06 |
| Dynamic [W] | 7.60 | 0.15 | 0.02 |
| Total [W]   | 9.38 | 0.32 | 0.08 |



Thermal intercepts for cold coupler KEK-STF cryomodule and power couplers 2009/9/19 SRF2009 Tutorial Program 15

### Support post-1

- Three G-10 posts for one cryomodule hold 8 cavity jackets, a quadrupole, cooling channels and thermal shields from the vacuum vessel.
  - Weight load for one post is 750 kg.
- The center post in the module is fixed to the vacuum vessel, and the posts in the both ends have a sliding structure for removing the effect of thermal contraction of GRP.
  - Distance changes of posts of the both ends: 12.9mm, 13.2mm.

#### G-10 support post





### Support post-2

- Thermal design of support post
  - Positions of the thermal intercepts are calculated in order to minimize the heat load to the helium refrigerator.
  - Estimation of the refrigerator load: Carnot efficiency and mechanical efficiency (experimental value)

#### Carnot efficiency = $T_c/(T_o-T_c)$

- Optimization by the distance of L2
- Calculation result
  - L<sub>2</sub> distance : Refrigerator heat load is minimized at 50% of the total conductive length of the post.
  - The heat load is not sensitive to the value of L<sub>2</sub>.
- Designed post
  - Post height: 140mm, L<sub>1</sub>=27mm, L<sub>2</sub>=37mm, L<sub>3</sub>=10mm
  - G-10 pipe: Outer diameter=300mm, thickness=2.2mm,
- Heat load
  - 0.1W @ 2.0K, 0.65W @ 5K, 5.9W @ 70K
  - Required work for refrigerator : 473 W/W

Required work for refrigerator at room temperature

| Temp. | Carnot<br>efficiency | Mechanical<br>efficiency | Total<br>efficiency | Required<br>work at 300K<br>W/W |
|-------|----------------------|--------------------------|---------------------|---------------------------------|
| 70K   | 30.43%               | 20%                      | 6.09%               | 16                              |
| 4.5K  | 1.52%                | 20%                      | 0.30%               | 328                             |
| 1.8K  | 0.60%                | 10%                      | 0.06%               | 1657                            |



#### Thermal analysis model of support post



#### Thickness of G-10 pipe: 1mm

2009/9/19

SRF2009 Tutorial Program

### Support post-3

(Thermal calculation by FEM and measured temperatures)



### Thermal radiation shields -1

- Constitution of thermal radiation shields
  - Aluminum plate cooled at 5K and 80K
    - Area of 5K shield plate=30m<sup>2</sup>
    - Area of 80K shield plate=35m<sup>2</sup>
  - Muti-layer insulation of aluminumevaporated film (Super insulation: SI)
    - 10 layers of SI on 5K aluminum plate
    - 30 layers of SI on 80K aluminum plate
  - Aluminum-evaporated film
    - Polyester film of 6~25 micro-meter thickness with evaporated aluminum of 0.1 micro-meter thickness
    - Emissivity : ε=0.056 (80K~300K), ε=0.011 (4.2K~80K)

Heat transfer by thermal radiation between the parallel plates

 $Q_r = A\sigma(1/(1/\epsilon_h + 1/\epsilon_c - 1))(T_h^4 - T_c^4)$ 

A:area,  $\sigma$ : Stefan-Boltzmann constant,  $\epsilon$ : emissivity, h: high temperature, c: low temperature

Thermal radiation shield plate at 80K



Assembly of thermal radiation shields at DESY



SRF2009 Tutorial Program

2009/9/19

### Thermal radiation shields -2

- The experimental data in CERN-LHC is used for calculating the effective heat load by thermal radiation:
  - Heat flux to 70 K shields from 300 K with 30 layers of SI: 1~1.5 W/m<sup>2</sup>
  - Heat flux to 5K shields from 70K with 10 layers of SI:0.05 W/m<sup>2</sup>

Heat load by thermal radiation (calculation)

|                                       | With SI | Without SI |
|---------------------------------------|---------|------------|
| 300K->80K heat flux, W/m <sup>2</sup> | 1~1.5   | 45.7       |
| 300K->80K total heat load, W          | 35~53   | 1600       |
| 80K->5K heat flux, W/m <sup>2</sup>   | 0.05    | 0.232      |
| 80K->5K total heat load, W            | 1.5     | 6.96       |

Emissivity without SI: 0.1

- Temperature profile in the thermal radiation shields
  - During cool-down, the temperature profile is in transient state, and the large temperature difference happens in the shield.(Calculation by INFN Carlo Pagani etc.)



### Thermal radiation shield-3

- Temperature profile in the shield plate
  - Calculation result at 8.7 hours after cooling starts
  - The cooling pipe is welded along the one side of shield plate. This side shows lower temperature than the other parts.
- Stress in the shield plate
  - Calculated maximum thermal stress: 30MPa
- Displacement by temperature profile and thermal stress

Horizontal direction : ~10mm





### Thermal radiation shield-4



#### Support post at both sides







# Cooling pipe (cooling circuit)

- Eight cooling pipes are designed in the cryomodule.
- One cryo-string = 12 cryomodules (154m)
  - Two liquid helium reservoir at both ends for keeping the liquid helium level.
  - The liquid helium level is controlled in the 2K liquid helium supply pipe.
- Saturated pressure liquid helium at 2K (P=3.1kPa) is produced by the adiabatic expansion from subcooled liquid helium (2.2K, 0.12MPa).



### Helium gas return pipe-1

#### Function of the helium gas return pipe

- 1. The cryogenic system including the pump system locates every 2.5 km along the accelerator.
- 2. Diameter of 300 mm
  - The pressure drop induced by the gas flow of evaporated gas influences the temperature of the saturated liquid helium along the accelerator.
- 8 superconducting cavities and one superconducting quadrupole are supported from the gas return pipe. (Back bone of the cryomodule)
  - The weight of the cold mass supported by the gas return pipe reaches 2 ton.
  - The sag of the gas return pipe is less than 50 micro meter when this pipe is hanged with three posts.



Cooling pipes in the DESY cryomodule

### Helium gas return pipe-2

(Effect of pressure distribution on temperature profile along the accelerator)

#### Condition of the calculation

- Cryomodules locate every 17m along the accelerator of 2.5 km. Total number of cryomodules is 147.
- Heat load of one cryomodule is assumed to be 10W or 30W.

#### Equation of pressure drop

 $\Delta P = 4f \times (G^2/2\rho) \times (L/D)$ 

f: friction factor, G:mass flow rate(kg/m<sup>2</sup>/s),

 $\rho$ : density (kg/m<sup>3</sup>), L:pipe length (m),

D: inner diameter (m),  $\Delta P$ : pressure drop(Pa)



### Helium gas return pipe-3

(Effect of pressure distribution on temperature profile along the accelerator)



- Pressure drop along the 2.5 km GRP = 25 Pa for 10 W, 158 Pa for 30W
- Temperature difference along the 2.5 km GRP = 3 mK for 10 W, 17 mK for 30W

























# Summary Study items for ILC cryomodule

- The basic function of the cryomodule has been developed by DESY and INFN.
- Improvement of cavity packing factor for increasing the effective field gradient.
- Development and construction of the cryomodule which has the quadrupole/ correctors/BPM in the center of the cryomodule.
- Optimization of the thermal shield system with considering construction and operation cost.
- The vibration of the cavities and the quadrupole in the cryomodule.
- Alignment repeatability of the cavities and the quadrupole after thermal cycle.

### Improvement of cryomodule for ILC

- The development of the cryomodule which has the quadrupole/correctors/ BPM in the center of the cryomodule.
  - In the TESLA and XFEL cryomodules, the quadrupole locates at the end of the cryomodule. In this case, the quadrupole position is influenced by the cooling condition including cool-down and warm-up.
  - The position under the support post at the center is the fixed position in the cryomodule, and it is insensitive to the thermal cycle.



### Improvement of cryomodule for ILC

- Making the distance short between cavities and simplifying the assembly process.
  - This length for TESLA-TYPE-III = 345.45mm  $\rightarrow 283$ mm for ILC ( $\Delta$ = -62.45 mm)
  - Since the length of the cavity is 1034.55 mm, this reduction in length leads to about 5 % increase in the accelerating field.





### Improvement of cryomodule for ILC

- Modifying the thermal radiation system from two shield system of 5K and 70K to one shield system of 40 K.
  - Improving the assembly process.
  - Changing the cooling scheme of the thermal shields and the thermal intercepts,



SRF2009 Tutorial Program

# Superconducting Cavity Helium Jacket

- Operating temperature of Superconducting cavity:2K
  - Cavity material: Niobium
  - Saturated vapor pressure liquid helium cooling(T=2K, P=3.1kPa)
- Helium vessel (Cavity jacket)
  - Material: Titanium
  - The ratio of thermal contraction is almost same as Niobium
    - Ti :0.134%, Nb:0.129%
  - Length of helium jacket: 1036.2mm
    - Thermal contraction by cooling = 0.05 mm
- Components for helium jacket
  - Frequency tuner
    - Mechanical motor at 5K:slow tuning of cavity frequency
    - Piezo: fast tuning(1200Hz)
  - Input coupler
  - HOM coupler
  - 2K LHe supply pipe
    - Material: Titanium or Stainless steel
  - Slide support structure



Cavity helium jacket with the blade-type frequency tuner



#### 2009/9/19

### 2K saturated liquid helium supply pipe-1

Supplying 2K liquid helium

- The total length of 154m along the one cryo-unit: straight pipe of ID= 72mm + Helium vessel to 2-phase pipe cross-connect of ID=55mm (length=~200mm)
- Heat load at cavity is removed by evaporation of liquid helium.
- In case that the area of evaporation is not sufficient, stable cooling is not kept.
  - The 2K supply pipe is filled with liquid helium.



### 2K saturated liquid helium supply pipe-2

Calculation of the temperature profile in the liquid helium with heat load.

- Heat load: 30W for four cavities
- Heating surface is the cavity surface, and the shape of 9 cells is assumed to be cylinder for simplification.
  - Pipe diameter between LHe supply line and cavity jacket = 60 mm
  - Cavity jacket length = 1000 mm
  - Distance between cavity heating surface and jacket inner surface = 6 mm
- Thermal calculation is performed with the two fluid model of super-fluid component and normal-fluid component (with viscosity and entropy).

#### Calculation model



Cavity vessel and 2K helium supply pipe

SRF2009 Tutorial Program

# 2K saturated liquid helium supply pipe-3

Calculation results

- There exists temperature profile which shows the turbulent condition in the superfluid helium.
  - At the both ends, T= 2.0024 K, and at the liquid surface, T= 2.000 K.
- The temperature gradient is induced in the sub-cooled condition by the hydraulic head pressure from the liquid surface to the heating area.
- Smaller the evaporation area leads to higher temperature of the balk helium, and to smaller sub-cooled condition.
  - Easy to happen a vapor film on the heating surface and decrease of cooling efficiency.



### Position change of cavities during cool-down/warm-up -1

- Alignment of cavities is performed in room temperature.
  - Alignment tolerance for ILC:
    - Cavity : XY directions =  $\pm 0.3$ mm
    - Quadrupole : XY directions =±0.3mm
- Positions of cavities and quadrupoles are changed by thermal contraction during cool-down and warm-up
  - Requirement of study for position change and the reproducibility by cool-down and warm-up
    - Measuring sensor: Wire Position Monitor (WPM)
    - WPM consists of 4 electrical terminals which locate 90 degrees in azimuthal direction.
    - Beryllium copper wire of  $\phi$  0.5 mm is stretched in WPMs.
      - Tension =  $100 \text{kg/mm}^2$ , sagging of wire = 2.07 mm
    - The wire is supported from the components at room temperature, and then the wire position is not influenced by cool-down.





### Position change of cavities during cooldown/warmup -2

mm

- Cavity position change while thermal cycles
  - WPM#1~7:Module-4
  - WPM#8~14:Module-5
  - Module-4 and 5 were connected with a bellow pipe.
- In the horizontal direction
  - Alignment error in room temp.<0.1mm
  - Position change at 2K from the base line
    - $1^{st}$  cooldown:-0.3mm< $\Lambda$ <+0.3mm
    - $2^{nd}$  cooldown:- 0.3mm< $\Lambda$ <+0.5mm
  - After warmup:- 0.1mm< $\Delta$ <+0.5mm
- In the vertical direction ٠
  - Alignment error in room temp. < 0.21mm
  - Position change at 2K from the base line
    - 1<sup>st</sup> cooldown : -0.35mm< $\Lambda$ <+0.25mm
    - $2^{nd}$  cooldown :- 0.4mm< $\Lambda$ <+0.2mm
  - After warmup :- 0.2mm < $\Delta$  <+0.5mm

#### Not good in reproducibility of the cavity position at 2K.



SRF2009 Tutorial Program

2009/9/19

### Measured heat load of cryomodules

- The heat loads of cryomodules measured in DESY are listed in the table.
- Heat load of 5 cryomodules:
  - Heat load at 2K < 3.5W</li>
  - Heat load at 4.3K =13~14.5W
- Heat load at RF operation (ILC specification):
  - Dynamic load at 2K = ~10 W
  - Dynamic load at 5K = -4 W
  - Dynamic load at 40K = ~90 W

|               |                                                             |          |            |            |           | Status:15- | Sep-04 R.I |                                  |        |                            |
|---------------|-------------------------------------------------------------|----------|------------|------------|-----------|------------|------------|----------------------------------|--------|----------------------------|
| Designed      | l, estin                                                    | nated    | and me     | asure      | d stati   | c Cryo     | -Loads     | TTF-                             | Module | s in TTF-Linac             |
| Module        | 40/80 K                                                     | [W]      | 1758       | 4.3K [W    | ŋ         | 1200       | 2 K [W]    |                                  |        | Notes                      |
| Name/Type     | Design                                                      | Estim.   | Meas.      | Design     | Estim.    | Meas.      | Design     | Estim.                           | Meas.  |                            |
| Capture       |                                                             |          | 46,8       |            |           | 3,9        |            |                                  | 5,5    | Special                    |
| Module 1 I    | 115.0                                                       | 76.8     | 90.0 *     | 21.0       | 13,9      | 23.0 *     | 4,2        | 2,8                              | 6,0 *  | Open holes in isolation    |
| Modul1 rep. l | 115.0                                                       | 76.8     | 81,5       | 21.0       | 13,9      | 15,9       | 4,2        | 2,8                              | 5,0    | 2 end-caps                 |
| Modul 2 II    | 115.0                                                       | 76.8     | 77,9       | 21.0       | 13,9      | 13.0       | 4,2        | 2,8                              | 4,0    | 2 end-caps                 |
| Module 3 II   | 115.0                                                       | 76.8     | 72.0 **    | 21.0       | 13,9      | 48.0 *     | *4,2       | 2,8                              | 5,0    | * Iso-vac 1E-04 mb, 2e-cap |
| Module 1* II  | 115.0                                                       | 76.8     | 73.0       | 21.0       | 13,9      | 13.0       | 4,2        | 2,8                              | <3.5   | 1 end-cap                  |
| Module 4 III  | 115.0                                                       | 76.8     | 74         | 21.0       | 13,9      | 13.5       | 4,2        | 2,8                              | <3.5   | 1 end-cap                  |
| Module 5 III  | 115.0                                                       | 76.8     | 74         | 21.0       | 13,9      | 13.0       | 4,2        | 2,8                              | <3.5   | 1 end-cap                  |
| Module SS     | 115.0                                                       | ~76.8    | 72.0       | ~21.0      | ~13.9     | 12.0       | ~4.2       | >2,8                             | 4,5    | Special, 2 end-caps        |
| Module 3* II  | 115.0                                                       | 76.8     | 75         | 21.0       | 13,9      | 14         | 4,2        | 2,8                              | <3.5   | 1 end-cap                  |
| Module 2* II  | 115.0                                                       | 76.8     | 74         | 21.0       | 13,9      | 14,5       | 4,2        | 2,8                              | <4,5   | 2 end-caps                 |
| Module 6 EP   | Type III,                                                   | EP-Cavit | ies Goal:S | Solution c | lose to X | FEL Modu   | les        |                                  |        | (Assembly End-04??)        |
|               | Design and estimated values by Tom Petersen 1995 -Fermilab- |          |            |            |           |            |            | Modules under Test in TTF2-Linac |        |                            |

#### Heat load at operation (rough calculation)

2K:10W and 4K:40W -> 80W at 4K

1 cooling unit (240 cryomodules) : 80 × 240=19200W

The planed refrigerator power : 25kW@4K, 30% operation margin

