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Abstract 
There are several efforts worldwide to develop information processing platforms using nanoscale devices that 
mimic the key architectural features of the brain. In this paper, we review some of the recent efforts in 
engineering nanoscale devices that capture the dynamics of neurons and synapses in the brain for building 
neuromorphic computing systems. We will also discuss the challenges in building efficient systems based on 
these devices so that they can be ubiquitously deployed in energy-constrained environments such as IoT (Internet 
of Things) edge nodes and in enterprise computing for massively parallel data analytics and inference. 

1. Introduction
Inspired by the organization and efficiency of the

human brain, significant strides have been achieved in 
the field of machine learning over the past decade in 
developing algorithms capable of learning and 
inference on various complex cognitive tasks [1]. 
However, their implementation in von Neumann 
computing systems is highly non-optimal, due to the 
large data movement between the physically separated 
memory and processor units. This has motivated the 
search for post-CMOS materials and devices that 
could efficiently mimic the dynamics of the 
computational entities of these networks [2].  

These networks consist of multiple layers of 
neurons connected through synapses whose weights 
are adjusted during training to minimize a cost 
function defined in terms of a labelled data-set. Such a 
network can be efficiently implemented in hardware 
using a tiled array of cross-bars [3], as illustrated in 
Figure 1. As opposed to deep learning networks, the 
third generation spiking neural networks (SNNs) use 
neuronal models that closely mimic the time based 
information encoding and processing aspects of the 
human brain – information is encoded in the time, rate 
or phases of issue of action potentials or spikes. Since 
spikes are issued sparsely, and all weight updates are 
triggered by spikes, SNN based hardware 
implementation could potentially be more energy 
efficient than the implementation of similar sized 
second generation ANNs. Though there are some 
recent efforts to build Si CMOS based hardware chips 
for deep learning [5], many noteworthy 
demonstrations rely on SNN architecture [6, 7], even 
though development of learning algorithms for them 
is a topic of active research today [8]. Hence, we will 
also focus on nanoscale devices for implementing 
neurons and synapses in SNNs in this paper.  

2. Nanoscale Devices for Neuro-Synaptic Networks
The target specifications for nanoscale devices to

implement neuronal and synaptic dynamics is listed in 
Figure 2. Clearly, achieving reliable operations in 
nanoscale devices at such low power is a significant 
challenge and requires integration and optimization of 
nanoscale materials and structures.  

The high fan-out connectivity in these networks 
results in significantly larger number of synapses 
compared to the number of neurons. Hence, 
mimicking synaptic plasticity efficiently is the key 
objective of many hardware engineering efforts today. 
However, there are also recent demonstrations that 
aim to capture the integrate-and-fire dynamics of 
biological neurons based on phase transition in 
correlated oxides or chalcogenides [9,10]. 

Most of the synaptic engineering efforts are 
directed towards building devices that are capable of 
capturing several forms of spike-triggered 
conductivity modulation schemes observed in 
biological synapses [11] (Figure 3). One efficient way 
to implement STDP rules in memristive devices is to 
use programming waveforms that mimic the shape of 
action potentials that are issued by spiking neurons 
along both its input and output terminals – the 
amplitudes are chosen such that only the coincidence 
of waveforms from both the partner neurons of a 
synapse can alter its conductance [12] (Figure 4, 5). 
There are several demonstrations of synaptic plasticity 
in nanoscale devices based on variants of this 
technique, approaching sub-pJ levels [13] (Figure 6). 

3. Discussion & Future Outlook
While individual devices have been demonstrated

mimicking neuronal and synaptic dynamics, the joint 
co-optimization of learning algorithms, device 
characteristics and system operating profiles will be 
essential to meet the promise of computing systems 
that approach the efficiency of the brain. 

References 
[1] Y. LeCun et al., Nature. 521 (2015), 436-444.
[2] B. Rajendran et al., IEEE JETCAS (2016), 198-211.
[3] B. Rajendran et al., IEEE TED (2013), 246-253.
[4] N. Rodriguez et al., IEEE TED 56 (2009), 1507-1515.
[5] Y-H Chen et al., Proceedings of ISCA 2016.
[6] P. Merolla et al., Science (2014), 668-673.
[7] N. Qiao et al, Frontiers in Neurosc. (2015), 9.141.
[8] S. Kulkarni et al., Proc of IEEE MWSCAS, 2017.
[9] K. Moon et al., IEDM Tech Digest, 2015.
[10] T.Tuma et al., Nature Nanotechnology, 693–600, 2016.
[11] L. Abbot et al., Nature Neuro., 1178-1183, 2000.
[12] N. Panwar et al., Device Research Conference, 2014.
[13] S. Mandal et al., Nature Sci Reports 4:5333, 2014.

mailto:bipin@njit.edu


Layer  
k-1

Layer 
k 

Layer 
k+1 

Layer 
k-1

Layer k:  Sense Amp + Dendrite 

Layer k 
Axon 

Layer k+1 
M

es
h 

R
ou

te
r n

et
w

or
k 

Plastic Synapse 

M
es

h 
R

ou
te

r n
et

w
or

k 

Fig. 1: Illustration of an artificial neural network and its
equivalent cross-bar array based hardware implementation.
Neuronal devices are in the periphery and synaptic devices
are at the junctions of the cross-bar array. Arbitrary net-
works can be mapped into tiled arrays of cross-bars that
communicates through binary spikes routed through a mesh
network.

Attribute Specification
Synapse
Main characteristic Analog programmability
Switching power, timescale 100 nW, 100 ns
Conductance Resolution > 64 levels
Dynamic Range ∼ 10MΩ-100MΩ
Programming non-linearity ∆g(Vs)/∆g(Vs/2) > 0.1
Area 25 − 100 F2

Switching endurance > 109 programming cycles
Neuron
Main characteristic Intrinsic current integrating

and thresholding behavior
Switching power, timescale 10 nW, 100 ns
Area < 10, 000 F2

Switching endurance > 1012 spikes

Fig. 2: Target specifications of nanoscale devices for brain-
inspired computing systems.
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Fig. 3: Spike time dependent plastic-
ity (STDP) is the modulation of effec-
tive conductivity (∆G/G) of the synapse
based on the spike activity of pre- and
post-synaptic neurons. In the equivalent
circuit model, synaptic conductance G
is modulated by the co-incident arrival
of pre-and post-synaptic spikes. Three
forms of plasticity rules are illustrated.

Fig. 4: Waveform engineering to imple-
ment spike timing dependent plasticity in
a memristive device, adapted from [12].
The peak amplitudes of the pre and post-
synaptic waveform is chosen such that
they are below the minimum voltage re-
quired for perturbing the state of the de-
vice. Device conductivity modulation is
hence a function of ∆t.

Fig. 5: Experimental measurement of
conductivity modulation in a PCMO thin
film device mimicking biologically ob-
served spike timing dependent plastic-
ity based on the programming scheme
in Figure 5, adapted from [12]. Arbi-
trary forms of plasticity can be obtained
inmemristive devices based on thiswave-
form engineering technique.

Fig. 6: Experimental demonstration of spike timing dependent plasticity in a TiN/Mn:HfO2/Ru device based on a
pulse-width modulation scheme, adapted from [13]. The energy consumed per event for this device is less than 500 fJ.




