Reflections on the state of ultra-wide-bandgap Ga₂O₃ MOSFETs

M. H. Wong^{1*}, Y. Nakata¹, C.-H. Lin¹, K. Sasaki², Y. Morikawa³, K. Goto^{2,4},

A. Takeyama⁵, T. Makino⁵, T. Ohshima⁵, A. Kuramata², S. Yamakoshi²,

H. Murakami⁴, Y. Kumagai⁴, and M. Higashiwaki¹

¹National Institute of Information and Communications Technology, Koganei, Tokyo, Japan

²Tamura Corporation, Sayama, Saitama, Japan

³Silvaco Japan Co., Ltd., Yokohama, Kanagawa, Japan

 4 Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan

⁵National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, Japan *Corresponding author: <u>mhwong@nict.go.jp</u>

Abstract

Gallium oxide (Ga_2O_3) is an emerging ultra-wide-bandgap (4.5–4.9 eV) semiconductor for high power and high voltage electronics with potential applications in harsh environments. Since the first report of a Ga_2O_3 field-effect transistor (FET) in 2012, Ga_2O_3 power devices have undergone tremendous technological advancement. This talk reviews the progress we have made and the lessons we have learnt on both lateral and vertical Ga_2O_3 metal-oxide-semiconductor (MOS) FETs. Future development directions will also be discussed.

1. Introduction

There have been strong interests in developing electronic devices based on wide bandgap compound semiconductors since Si technology is approaching fundamental performance limits. The past few years witnessed an enormous upsurge in research activities on ultra-wide-bandgap Ga₂O₃ for next-generation power electronics with high efficiency and compact size owing to the material's astounding Baliga's figure of merit and low substrate cost [1]. Ga₂O₃ is also thermally stable and radiation hard, thus rendering it suitable for devices and systems that demand stable operations in harsh environments. In this talk, we introduce the design principles and engineering strategies of lateral depletion-mode (Dmode) and enhancement-mode (E-mode) Ga₂O₃ Progress toward MOSFETs. vertical Ga₂O₃ MOSFETs will also be presented.

2. Experimental

Lateral Ga2O3 MOSFETs were fabricated on unintentionally-doped (UID) Ga_2O_3 (010) grown by molecular beam epitaxy. D-mode devices consisted of an *n*-type channel and ohmic contacts doped by Si-ion (Si⁺) implantations [Fig. 1(a)] [2]. E-mode devices consisted of a UID channel for accumulation-mode and Si⁺-implanted operation access regions overlapped by the gate electrode [Fig. 2(a)] [3]. Vertical D-mode Ga₂O₃ (001) MOSFETs [Fig. 3(a)] [4], which had a drift layer grown by halide vapor phase epitaxy, featured a planar-gate architecture wherein an Mg-ion-implanted current blocking layer (CBL) provided electrical isolation between source and drain except at an aperture opening through which drain current (I_{DS}) was conducted. Transistor action was realized by gating a Si⁺-implanted channel above the CBL. All MOSFETs incorporated an Al₂O₃ gate insulator formed by plasma-assisted atomic layer deposition.

3. Results and Discussion

Field-plated lateral D-mode Ga₂O₃ MOSFETs with SiO₂ surface passivation achieved a high offstate breakdown voltage of 755 V [Fig. 1(b)], a large $I_{\rm DS}$ on/off ratio $(I_{\rm ON}/I_{\rm OFF})$ of over 10⁹, stable high temperature operation at 300°C, and dispersion-free output characteristics [2]. The bulk Ga₂O₃ channel exhibited strong gamma-ray tolerance, yet radiationinduced dielectric damage and interface charge trapping limited the total-dose radiation hardness of these devices [Fig. 4] [5]. E-mode operation was enabled by a low maximum background carrier density of $\sim 10^{14}$ cm⁻³ in UID Ga₂O₃ that enabled full channel depletion at zero gate bias. Despite hysteretic effects associated with an unoptimized gate dielectric, a decent $I_{\rm ON}$ of 1.4 mA/mm and a large $I_{\rm ON}/I_{\rm OFF}$ near 10^6 were obtained [Fig. 2(b)] [3]. The vertical MOSFETs demonstrated clear I_{DS} modulation [Fig. 3(b)]; however, Mg diffusion during activation annealing led to residual *n*-type conductivity in the CBL and consequently large off-state source-drain leakage [4]. Future work on vertical MOSFETs will focus on investigating thermally-stable deep acceptor species (e.g. nitrogen) for the CBL (Fig. 5) [6].

4. Conclusion

The rapid development of Ga_2O_3 MOSFETs in recent years has affirmed their prospects for nextgeneration power switches. Advanced device architectures, notably normally-off vertical transistors, will further enhance the impact of this technology.

References

- [1] M. Higashiwaki et al., Appl. Phys. Lett. 112 (2018), 060401
- [2] M. H. Wong et al., IEEE EDL 37 (2016), 212-215
- [3] M. H. Wong et al., Appl. Phys. Exp. 10 (2017), 041101
- [4] M. H. Wong et al., Proc. IEEE Device Res. Conf. 2017
- [5] M. H. Wong et al., Appl. Phys. Lett. 112 (2018), 023503
- [6] M. H. Wong et al., Proc. ISCS (2018, Boston, USA)

Fig.1: (a) Cross-sectional schematic and (b) DC output characteristics of field-plated lateral D-mode Ga₂O₃ MOSFET [2].

Fig.2: (a) Cross-sectional schematic and (b) DC transfer characteristic of lateral E-mode Ga_2O_3 MOSFET [3].

Fig.3: (a) Cross-sectional schematic and (b) DC output characteristics of vertical D-mode Ga₂O₃ MOSFET [4].

Fig.4: DC output characteristics of field-plated lateral D-mode Ga_2O_3 MOSFET before and after gamma-ray irradiations [5].

Fig.5: Comparison between leakage currents through N-ion-implanted and Mg-ion-implanted CBLs [6].