Publications

2015

Multireference approach to the calculation of photoelectron spectra including spin-orbit coupling
G. Grell, S. I. Bokarev, B. Winter, R. Seidel, E. F. Aziz, S. G. Aziz, O. Kuehn
Journal of Chemical Physics 143: 074104 (2015)
doi: 10.1063/1.4928511

Ti3+ Aqueous Solution: Hybridization and Electronic Relaxation Probed by State-Dependent Electron Spectroscopy
R. Seidel, K. Atak, S. Thürmer, E. F. Aziz, B. Winter,
J. Phys. Chem. B 119: 10607-10615 (2015)
doi: 10.1021/acs.jpcb.5b03337

Control of X-ray Induced Electron and Nuclear Dynamics in Ammonia and Glycine Aqueous Solution via Hydrogen Bonding
I. Unger, D. Hollas, R. Seidel, S. Thuermer, E. F. Aziz, P. Slavicek, B. Winter
Journal of Physical Chemistry B 119: 10750-10759 (2015)
doi: 10.1021/acs.jpcb.5b07283

Reply to the 'Comment on "Charge Transfer to Solvent Dynamics in Iodide Aqueous Solution Studied at Ionization Threshold"' by A. Lubcke and H.-H. Ritze
A. Kothe, M. Wilke, A. Moguilevski, N. Engel, B. Winter, I. Y. Kiyan, E. F. Aziz
Phys. Chem. Chem. Phys. 17: 18195-18196 (2015)
doi: 10.1039/c5cp01804h

Co(III) protoporphyrin IX chloride in solution: spin-state and metal coordination revealed from resonant inelastic X-ray scattering and electronic structure calculations
K. Atak, R. Golnak, J. Xiao, M. Pflüger, T. Brandenburg, B. Winter, E. F. Aziz
PCCP 17: 3409-3414 (2015)
doi: 10.1039/C4CP04703F

Charge transfer to solvent dynamics in iodide aqueous solution studied at ionization threshold
A. Kothe, M. Wilke, A. Moguilevski, N. Engel, B. Winter, I. Yu. Kiyan, E. F. Aziz
PCCP 17: 1918-1924 (2015)
doi: 10.1039/C4CP02482F

Exploring the Aqueous Vertical Ionization of Organic Molecules by Molecular Simulation and Liquid Microjet Photoelectron Spectroscopy
P. R. Tentscher, R. Seidel, B. Winter, J. J. Guerard, and J. S. Arey
J Phys Chem B 119: 238-256 (2015)
doi: 10.1021/jp508053m

Scientists strike wet gold
B.Winter
nature chemistry 7: 192-194 (2015)
doi: doi:10.1038/nchem.2189

Oxidation Half-Reaction of Aqueous Nucleosides and Nucleotides via Photoelectron Spectroscopy Augmented by ab Initio Calculations
Ch. A. Schroeder, E. Pluhařová, R. Seidel, W. P. Schroeder, M. Faubel, P. Slavíček, B. Winter, P. Jungwirth, S. E. Bradforth
JACS 137: 201–209 (2015)
doi: 10.1021/ja508149e

 



2014

Characterization of the Acetonitrile Aqueous Solution/Vapor Interface by Liquid-Jet X-ray Photoelectron Spectroscopy
K. A. Perrine, M. H. C. Van Spyk, A. M. Margarella, B. Winter, M. Faubel, H. Bluhm, J. C. Hemminger
Journal of Physical Chemistry C 118: 29378-29388 (2014)
doi: 10.1021/jp505947h

Comment on "State-Dependent Electron Delocalization Dynamics at the Solute-Solvent Interface: Soft-X-ray Absorption Spectroscopy and Ab Initio Calculations" Reply
S. I. Bokarev, M. Dantz, E. Suljoti, K. Atak, B. Winter, O. Kuehn, E. F. Aziz
Phys. Rev. Lett. 112: 129303 (2014)
doi: 10.1103/PhysRevLett.112.129303

Proton-Transfer Mediated Enhancement of Nonlocal Electronic Relaxation Processes in X-ray Irradiated Liquid Water
P. Slavíček, B. Winter, L. S. Cederbaum, N. V. Kryzhevoi
JACS 136: 18170-18176 (2014)
doi: 10.1021/ja5117588

DNA Lesion Can Facilitate Base Ionization: Vertical Ionization Energies of Aqueous 8-Oxoguanine and its Nucleoside and Nucleotide
V. Palivec, E. Pluhařová, I. Unger, B. Winter, P. Jungwirth
J Phys Chem B 118: 13833-13837 (2014)
doi: 10.1021/jp5111086

Deeper Insight into Depth-Profiling of Aqueous Solutions Using Photoelectron Spectroscopy
O. Björneholm, J. Werner, N. Ottosson, G. Öhrwall, V. Ekholm, B. Winter, I. Unger, and J. Söderström
J Phys Chem C 118: 29333-29339 (2014)
doi: 10.1021/jp505569c

Ultrafast Proton and Electron Dynamics in Core-Ionized Hydrated Hydron Peroxide: Photoemission Measurements with Isotopically Substituted Hydrogen Peroxide
I. Unger, S. Thürmer, D. Hollas, E. F. Aziz, B. Winter, P. Slavíček
J Phys Chem C 118: 29142–29150 (2014)
doi: 10.1021/jp504707h

The Assistance of the Iron Porphyrin Ligands to the Binding Interaction Between the Fe Center and Small Molecules in Solution
J. Xiao, R. Golnak, K. Atak, M. Pflüger, M. Pohl, E. Suljoti, B. Winter, E. Aziz
J Phys Chem B 118: 9371-9377 (2014)
doi: 10.1021/jp5023339

Electronic Structure of Hemin in Solution Studied by Resonant X-ray Emission Spectroscopy and Electronic Structure Calculations

K. Atak, R. Golnak, J. Xiao, Jie, E. Suljoti, M. Pflüger, T. Brandenburg, B. Winter, E. Aziz
J Phys Chem B (2014)
doi: 10.1021/jp505129m

Photoemission Spectra and Density Functional Theory Calculations of 3d Transition Metal-Aqua Complexes (Ti-Cu) in Aqueous Solution
D. Yepes, R. Seidel, B. Winter, J. Blumberger, P. Jaque
J Phys Chem B 118: 6850–6863 (2014)
doi: 10.1021/jp5012389



2013

Unexpectedly Small Effect of the DNA Environment on Vertical Ionization Energies of Aqueous Nucleobases
E. Pluhařová, C. Schroeder, R. Seidel, S. E. Bradforth, B. Winter, M. Faubel, P. Slavíček, P. Jungwirth
J Phys Chem Lett 4: 3766-3769 (2013)
doi: 10.1021/jz402106h

Measure of Surface Potential at the Aqueous−Oxide Nanoparticle Interface by XPS from a Liquid Microjet
M. A. Brown, A. Beloqui Redondo, M. Sterrer, B. Winter, G. Pacchioni, Z. Abbas, J. A. van Bokhoven
Nano Lett 13: 5403-5407 (2013)
doi: 10.1021/nl402957y

On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation
S. Thürmer, M. Ončák, N. Ottosson, R. Seidel, U. Hergenhahn, S. E. Bradforth, P. Slavíček and B Winter
Nat Chem 5: 590-596 (2013)
doi: 10.1038/nchem.1680

Relaxation of Electronically Excited Hydrogen Peroxide in Liquid Water: Insights from Auger-Electron Emission
S. Thürmer , I. Unger , P. Slavíček , and B. Winter
J Phys Chem C, Accepted (2013)
doi: 10.1021/jp401569w

Photoelectron angular distributions from liquid water: Effects of electron scattering
S. Thürmer, R. Seidel, M. Faubel, W. Eberhardt, J. C. Hemminger, S. E. Bradforth, B. Winter
Phys Rev Lett 117 (17): 173005 (2013)
doi: 101103/PhysRevLett.111.173005

Dissociation of Sulfuric Acid in Aqueous Solution: Determination of the Photoelectron Spectral Fingerprints of H2SO4, HSO4, and SO42– in Water
A. M. Margarella, K. A. Perrine, T. Lewis, M. Faubel, B. Winter, and J. C. Hemminger
J Phys Chem C 117 (16): 8131-8137 (2013)
doi: 10.1021/jp308090k



2012

Transforming Anion Instability into Stability: Contrasting Photoionization of Three Protonation Forms of the Phosphate Ion upon Moving into Water
E. Pluhařová, M. Ončák, R. Seidel, C. Schroeder, W. Schroeder, B. Winter, S. E. Bradforth, P. Jungwirth, and P. Slavíček
J Phys Chem B 116 (44): 13254-13264 ( 2012)
doi: 10.1021/jp306348b

Electronic Structures of Formic Acid (HCOOH) and Formate (HCOO-) in Aqueous Solutions
M. A. Brown, F. Vila, M. Sterrer, S. Thürmer, B. Winter, M. Ammann, J. J. Rehr, and J. van Bokhoven
J Phys Chem Lett 3 (13): 1754-1759 ( 2012)
doi: 10.1021/jz300510r

First-Principle Protocol for Calculating Ionization Energies and Redox Potentials of Solvated Molecules and Ions: Theory and Application to Aqueous Phenol and Phenolate
D. Ghosh, A. Roy, R. Seidel, B. Winter, S.E. Bradforth, and A.I. Krylov
J Phys Chem B 116 (24): 7269–7280 (2012)
doi: 10.1021/jp301925k

Origin of dark-channel X-ray fluorescence from transition-metal ions in water
R. Seidel, S. Ghadimi, K. M. Lange, S. Bonhommeau, M. A. Soldatov, R. Golnak, A. Kothe, R. Könnecke, A. Soldatov, S. Thürmer, B. Winter, and E. F. Aziz
J Am Chem Soc 134 (3): 1600-1605 (2012)
doi: 10.1021/ja207931r

Bond-Breaking, Electron-Pushing and Proton-Pulling: Active and Passive Roles in the Interaction between Aqueous Ions and Water as Manifested in the O 1s Auger Decay
W. Pokapanich, N. Ottosson, S. Svensson, G. Öhrwall, B. Winter, and O. Björneholm
J Phys Chem B 116 (1): 3-8 (2012)
doi: 10.1021/jp2041247



2011

Does Nitric Acid Dissociate at the Aqueous Solution Surface?
T. Lewis, B. Winter, A.C. Stern, M.D. Baer, C.J. Mundy, D. J. Tobias, and J.C. Hemminger
J Phys Chem C 115 (43): 21183-21190 (2011)
doi: 10.1021/jp205842w

Valence photoemission spectra of aqueous Fe2+/3+ and [Fe(CN)6]4-/3- and their interpretation by DFT calculations
R. Seidel, S. Thürmer, J. Moens, P. Geerlings, J. Blumberger, and B. Winter
J Phys Chem B 115 (40): 11671-11677 (2011)
doi: 10.1021/jp203997p

Ultrafast hybridization screening in Fe3+ aqueous solution
S. Thürmer, R. Seidel, W. Eberhardt, S.E. Bradforth, and B. Winter
J Am Chem Soc 133 (32): 12528-12535 (2011)
doi: 10.1021/ja200268b

Cations Strongly Reduce Electron Hopping Rates in Aqueous Solutions
N. Ottosson, M. Odelius, D. Spångberg, W. Pokapanich, M. Svanqvist, G. Öhrwall, B. Winter, and O. Björneholm
J Am Chem Soc 133 (34): 13489–13495 (2011)
doi:10.1021/ja204100j

Dissociation of Strong Acid Revisited: X-ray Photoelectron Spectroscopy and Molecular Dynamics Simulations of HNO3 in Water
T. Lewis, B. Winter, A.C. Stern, M.D. Baer, C.J. Mundy, D.J. Tobias, and J.C. Hemminger
J Phys Chem B 115 (30): 9445-9451 (2011)
doi:10.1021/jp205510q

Electronic structure of sub-10 nm colloidal silica nanoparticles measured by in situ photoelectron spectroscopy at the aqueous-solid interface
M. A. Brown, R. Seidel, S. Thürmer, M. Faubel, J. C. Hemminger, J. A. van Bokhoven, B. Winter, and M. Sterrer
Phys Chem Chem Phys 13 (28): 12720-12723 (2011)
doi:10.1039/c1cp21131e

CO2 Capture in Amine-Based Aqueous Solution: Role of the Gas–Solution Interface
T. Lewis, M. Faubel, B. Winter, and J. C. Hemminger
Angew Chem Int Ed 50 (43): 10178-10181 (2011)
doi:10.1002/anie.201101250

Photoelectron Spectroscopy Meets Aqueous Solution: Studies from a Vacuum Liquid Microjet (Perspective)
R. Seidel, S. Thürmer, and B. Winter
J Phys Chem Lett 2 (6): 633-641 (2011)
doi:10.1021/jz101636y

Flexible H2O2 in Water: Electronic Structure from Photoelectron Spectroscopy and Ab Initio Calculations
S. Thürmer, R. Seidel, B. Winter, M. Ončák, and P. Slavíček
J Phys Chem A 115 (23): 6239–6249 (2011)
doi:10.1021/jp111674s

On the Origins of Core−Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and ab Initio Calculations of Glycineaq
N. Ottosson, K. J. Børve, D. Spångberg, H. Bergersen, L. J. Sæthre, M. Faubel, W. Pokapanich, G. Öhrwall, O. Björneholm, and B. Winter
J Am Chem Soc 133 (9): 3120–3130 (2011)
doi:10.1021/ja110321q



2010

Comment on “An explanation for the charge on water's surface” by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994
R. Vacha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth
Phys Chem Chem Phys 12 (42): 14362-14363 (2010)
doi:10.1039/C001492c

The influence of concentration on the molecular surface structure of simple and mixed aqueous electrolytes
N. Ottosson, J. Heyda, E. Wernersson, W. Pokapanich, S. Svensson, B. Winter, G. Öhrwall, P. Jungwirth, and O. Björneholm
Phys Chem Chem Phys 12 (36): 10693-10700 (2010)
doi:10.1039/C0cp00365d

Energy Levels and Redox Properties of Aqueous Mn2+/3+ from Photoemission Spectroscopy and Density Functional Molecular Dynamics Simulation
J. Moens, R. Seidel, P. Geerlings, M. Faubel, B. Winter, and J. Blumberger
J Phys Chem B 114 (28): 9173-9182 (2010)
doi:10.1021/Jp101527v

Binding energies, lifetimes and implications of bulk and interface solvated electrons in water
K. R. Siefermann, Y. X. Liu, E. Lugovoy, O. Link, M. Faubel, U. Buck, B. Winter, and B. Abel
Nat Chem 2 (4): 274-279 (2010)
doi:10.1038/Nchem.580

Photoelectron spectroscopy of liquid water and aqueous solution: Electron effective attenuation lengths and emission-angle anisotropy
N. Ottosson, M. Faubel, S. E. Bradforth, P. Jungwirth, and B. Winter
J Electron Spectrosc 177 (2-3): 60-70 (2010)
doi:10.1016/j.elspec.2009.08.007



2009

Reply to comments on Frontiers Article 'Behavior of hydroxide at the water/vapor interface'
B. Winter, M. Faubel, R. Vacha, and P. Jungwirth
Chem Phys Lett 481 (1-3): 19-21 (2009)
doi:10.1016/j.cplett.2009.09.010

Behavior of hydroxide at the water/vapor interface (Frontier)
B. Winter, M. Faubel, R. Vacha, and P. Jungwirth
Chem Phys Lett 474 (4-6): 241-247 (2009)
doi:10.1016/j.cplett.2009.04.053

Single-Ion Reorganization Free Energy of Aqueous Ru(bpy)32+/3+ and Ru(H2O)62+/3+ from Photoemission Spectroscopy and Density Functional Molecular Dynamics Simulation
R. Seidel, M. Faubel, B. Winter, and J. Blumberger
J Am Chem Soc 131 (44): 16127-16137 (2009)
doi:10.1021/Ja9047834

Large variations in the propensity of aqueous oxychlorine anions for the solution/vapor interface
N. Ottosson, R. Vacha, E. F. Aziz, W. Pokapanich, W. Eberhardt, S. Svensson, G. Öhrwall, P. Jungwirth, O. Björneholm, and B. Winter
J Chem Phys 131 (12): 124706 (2009)
doi:10.1063/1.3236805

Liquid microjet for photoelectron spectroscopy
B. Winter
Nucl Instrum Meth A 601 (1-2): 139-150 (2009)
doi:10.1016/j.nima.2008.12.108

Spatial Distribution of Nitrate and Nitrite Anions at the Liquid/Vapor Interface of Aqueous Solutions
M. A. Brown, B. Winter, M. Faubel, and J. C. Hemminger
J Am Chem Soc 131 (24): 8354-8355 (2009)
doi:10.1021/Ja901791v

Ionization Energies of Aqueous Nucleic Acids: Photoelectron Spectroscopy of Pyrimidine Nucleosides and ab Initio Calculations
P. Slavíček, B. Winter, M. Faubel, S. E. Bradforth, and P. Jungwirth
J Am Chem Soc 131 (18): 6460-6467 (2009)
doi:10.1021/Ja8091246

X-Ray photo- and resonant Auger-electron spectroscopy studies of liquid water and aqueous solutions
M. A. Brown, M. Faubel, and B. Winter
Annual Reports Section "C" (Physical Chemistry) 105: 174-212 (2009)
doi:10.1039/B803023P



2008

Cation-specific interactions with carboxylate in amino acid and acetate aqueous solutions: X-ray absorption and ab initio calculations
E. F. Aziz, N. Ottosson, S. Eisebitt, W. Eberhardt, B. Jagoda-Cwiklik, R. Vacha, P. Jungwirth, and B. Winter
J Phys Chem B 112 (40): 12567-12570 (2008)
doi:10.1021/Jp805177v

Interaction between liquid water and hydroxide revealed by core-hole de-excitation
E. F. Aziz, N. Ottosson, M. Faubel, I. V. Hertel, and B. Winter
Nature 455 (7209): 89-91 (2008)
doi:10.1038/Nature07252

Pseudoequivalent nitrogen atoms in aqueous imidazole distinguished by chemical shifts in photoelectron spectroscopy
D. Nolting, N. Ottosson, M. Faubel, I. V. Hertel, and B. Winter
J Am Chem Soc 130 (26): 8150-8151 (2008)
doi:10.1021/Ja8022384

Ionization of aqueous cations: Photoelectron spectroscopy and ab initio calculations of protonated imidazole
B. Jagoda-Cwiklik, P. Slavicek, D. Nolting, B. Winter, and P. Jungwirth
J Phys Chem B 112 (25): 7355-7358 (2008)
doi:10.1021/Jp802454s

Ionization of imidazole in the gas phase, microhydrated environments, and in aqueous solution.
B. Jagoda-Cwiklik, P. Slavicek, L. Cwiklik, D. Nolting, B. Winter, and P. Jungwirth
J Phys Chem A 112 (16): 3499-3505 (2008)
doi:10.1021/Jp711476g

Electron dynamics in charge-transfer-to-solvent states of aqueous chloride revealed by Cl- 2p resonant Auger-electron spectroscopy
B. Winter, E. F. Aziz, N. Ottosson, M. Faubel, N. Kosugi, and I. V. Hertel
J Am Chem Soc 130 (22): 7130-7138 (2008)
doi:10.1021/Ja8009742

Ions at aqueous interfaces: From water surface to hydrated proteins
P. Jungwirth and B. Winter
Annu Rev Phys Chem 59: 343-366 (2008)
doi:10.1146/annurev.physchem.59.032607.093749



2007

Hydrogen bonding in liquid water probed by resonant Auger-electron spectroscopy
B. Winter, U. Hergenhahn, M. Faubel, O. Björneholm, and I. V. Hertel
J Chem Phys 127 (9): 094501 (2007)
doi:10.1063/1.2770457

pH-Induced protonation of lysine in aqueous solution causes chemical shifts in X-ray photoelectron spectroscopy
D. Nolting, E. F. Aziz, N. Ottosson, M. Faubel, I. V. Hertel, and B. Winter
J Am Chem Soc 129 (45): 14068-14073 (2007)
doi:10.1021/Ja072971l

Hydrogen bonds in liquid water studied by photoelectron spectroscopy
B. Winter, E. F. Aziz, U. Hergenhahn, M. Faubel, and I. V. Hertel
J Chem Phys 126 (12): 124504 (2007)
doi:10.1063/1.2710792



2004-2006

Photoemission from liquid aqueous solutions
B. Winter and M. Faubel
Chem Rev 106 (4): 1176-1211 (2006)
doi:10.1021/Cr040381p

Electron binding energies of hydrated H3O+ and OH-: Photoelectron spectroscopy of aqueous acid and base solutions combined with electronic structure calculations
B. Winter, M. Faubel, I. V. Hertel, C. Pettenkofer, S. E. Bradforth, B. Jagoda-Cwiklik, L. Cwiklik, and P. Jungwirth
J Am Chem Soc 128 (12): 3864-3865 (2006)
doi:10.1021/Ja0579154

Effect of bromide on the interfacial structure of aqueous tetrabutylammonium iodide: Photoelectron spectroscopy and molecular dynamics simulations
B. Winter, R. Weber, I. V. Hertel, M. Faubel, L. Vrbka, and P. Jungwirth
Chem Phys Lett 410 (4-6): 222-227 (2005)
doi:10.1016/j.cplett.2005.05.084

Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations
B. Winter, R. Weber, I. V. Hertel, M. Faubel, P. Jungwirth, E. C. Brown, and S. E. Bradforth
J Am Chem Soc 127 (19): 7203-7214 (2005)
doi:10.1021/Ja042908l

Molecular structure of surface-active salt solutions: Photoelectron spectroscopy and molecular dynamics simulations of aqueous tetrabutylammonium iodide
B. Winter, R. Weber, P. M. Schmidt, I. V. Hertel, M. Faubel, L. Vrbka, and P. Jungwirth
J Phys Chem B 108 (38): 14558-14564 (2004)
doi:10.1021/Jp0493531

Photoemission from aqueous alkali-metal-iodide salt solutions using EUV synchrotron radiation
R. Weber, B. Winter, P. M. Schmidt, W. Widdra, I. V. Hertel, M. Dittmar, and M. Faubel
J Phys Chem B 108 (15): 4729-4736 (2004)
doi:10.1021/Jp030776x

Full valence band photoemission from liquid water using EUV synchrotron radiation
B. Winter, R. Weber, W. Widdra, M. Dittmar, M. Faubel, and I. V. Hertel
J Phys Chem A 108 (14): 2625-2632 (2004)
doi:10.1021/Jp030263q



Reviews

Review Covers


Photoelectron Spectroscopy Meets Aqueous Solution: Studies from a Vacuum Liquid Microjet (Perspective)

R. Seidel, S. Thürmer, and B. Winter
J Phys Chem Lett 2: 633-641 (2011)
doi:10.1021/jz101636y
Abstract: “Characterization of the structure and properties of matter would be incomplete without the detailed knowledge of electronic structure, and yet, for aqueous solutions, not even the binding energies of the valence electrons are generally known. Thus, fundamental interactions between solute electronic structure and water, essentially the key to chemical reactivity, have remained poorly understood. This work describes how, by the development of the vacuum liquid microjet technique for X-ray photoelectron spectroscopy, electronic structure measurements from aqueous solutions have advanced to date. Direct and resonant second-order electron emission processes are discussed in light of the specific electron structure information accessible from aqueous solutions. Several examples of solutes in their natural aqueous environment will be presented along with future research directions and prevailing challenges in the field.”

Liquid microjet for photoelectron spectroscopy

B. Winter
Nucl Instrum Meth A 601 (1-2): 139-150 (2009)
doi:10.1016/j.nima.2008.12.108
Abstract: ” Photoelectron spectroscopy from highly volatile liquids, especially from water and aqueous solutions, has recently become possible due to the development of the vacuum liquid microjet in combination of high-brilliance synchrotron radiation. The present status of this rapidly growing field is reported here, with an emphasize on the method's sensitivity for detecting local electronic structure, and for monitoring ultrafast dynamical processes in aqueous solution exploiting core-level resonant excitation.”

X-Ray photo- and resonant Auger-electron spectroscopy studies of liquid water and aqueous solutions

M. A. Brown, M. Faubel, and B. Winter
Annual Reports Section "C" (Physical Chemistry) 105: 174-212 (2009)
doi:10.1039/B803023P
Abstract: ” It has only recently become possible to use photoelectron spectroscopy (PES) to study the electronic structure of highly volatile aqueous surfaces. Here, we review current X-ray PES and related resonant Auger-electron decay and intermolecular Coulomb decay investigations in solution, which aim at understanding the solute–water, water–water, and solute–solute interactions at the microscopic level. Systems that will be discussed include neat liquid water, and aqueous solutions of hydroxide, hydronium, salts and amino acids. From observed chemical shifts in the main photoelectron lines or from the occurrence of spectator Auger-electron peaks, information on electron dynamics and/or energy transfer processes, and at times on the structure of the hydration complex, may be accessed. Furthermore, we discuss PES in conjunction with variable energy incident X-ray photons; with the resulting change of the (photo)electron kinetic energy, ion spatial distributions at the liquid–vapor interface can be determined.”

Ions at aqueous interfaces: From water surface to hydrated proteins

P. Jungwirth and B. Winter
Annu Rev Phys Chem 59: 343-366 (2008)
doi:10.1146/annurev.physchem.59.032607.093749
Abstract: “The surfaces of aqueous solutions are traditionally viewed as devoid of inorganic ions. Molecular simulations and surface-selective spectroscopic techniques show, however, that large polarizable anions and hydronium cations can be found (and even enhanced) at the surface and are involved in chemistry at the air/water interface. Here, we review recent studies of ions at the air/water interface and compare from this perspective water with other polar solvents. For water, we focus in particular on the surface behavior of its ionic product (i.e., hydronium and hydroxide ions). We also investigate the feasibility of dielectric models for the description of the protein/water interface, in analogy to the air/water interface. Little correlation is found between these two interfaces in terms of ion segregation. Therefore, we suggest a local model of pairing of ions from the solution with charged and polar groups at the protein surface. We also describe corresponding results of experimental studies on aqueous model systems.”

Photoemission from liquid aqueous solutions

B. Winter and M. Faubel
Chem Rev 106 (4): 1176-1211 (2006)
doi:10.1021/Cr040381p
The structure of liquid water, its role in the solvation of ionic and neutral species, and its effects on chemical reactions have been the focus of research for over a century, and yet the understanding of the structure of liquid water on the microscopic level is rudimentary. Knowledge of the molecular geometric and electronic structures of the ions and the solvent is a prerequisite to understanding the physical, chemical, and biological processes involving water. This includes the behavior of the ions both in the bulk solutionand at the solution interface. Examples cover such diverse topics as the physics of confined water near biological surfaces and chemical reactions involving halide ions at the surface of atmospheric aerosol particles. In fact, surface solvation of halide ions by water molecules has been reported to be important in controlling the oxidant levels in the marine boundary layer of the atmosphere. Moreover, the ready availability of mobile ions in the liquidis, perhaps, the most important single factor contributing to the specific and peculiar role of electrolyte liquids. Very small ion concentrations can induce major effects in electrolytes, as is exemplified by the pH value of neat water, which is induced by only one ion in 108-109 neutral H2O molecules.