Görlin, M.; Ferreira de Araújo, J.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H.; Strasser, P.: Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts : the Role of Catalyst Support and Electrolyte pH. , Journal of the American Chemical Society 139 (2017), p. 2070-2082


Gonzalez-Flores, D.; Zaharieva, I.; Heidkamp, J.; Chernev, P.; Martinez-Moreno, E.; Pasquini, C.; Mohammadi, M.R.; Klingan, K.; Gernet, U.; Fischer, A.; Dau, H.: Electrosynthesis of Biomimetic Manganese-Calcium Oxides for Water Oxidation CatalysisAtomic Structure and Functionality. , ChemSusChem 9 (2016), p. 379-387

Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P.: Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. , Journal of the American Chemical Society 138 (2016), p. 5603-5614

Najafpour, M.M.; Sedigh, D.J.; Hosseini, S.M.; Zaharieva, I.: Treated nanolayered Mn oxide by oxidizable compounds: A strategy to improve the catalytic activity toward water oxidation. , Inorganic Chemistry 55 (2016), p. 8827–8832

Menezes, P.W.; Indra, A.; Bergmann, A.; Chernev, P.; Walter, C.; Dau, H.; Strasser, P.; Driess, M.: Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water. , Journal of Materials Chemistry A 4 (2016), p. 10014-10022

Zaharieva, I.; González-Flores, D.; Asfari, B.; Pasquini, C.; Mohammadi, M.R.; Klingan, K.; Zizak, I.; Loos, S.; Chernev, P.; Dau, H.: Water oxidation catalysis – role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides. , Energy & Environmental Science 9 (2016), p. 2433-2443


Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araujo, J.F.; Reier, T.; Dau, H.; Strasser, P.: Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. , Nature Communications 6 (2015), p. 8625