Influence of the porosity on diffusion and lifetime in porous TiO₂ layers

Th. Dittrich⁹,¹.b
Hahn-Meitner-Institute, Glienicker Strasse 100, 14109 Berlin, Germany

A. Ofir, S. Tiros, L. Grinis, and A. Zabana⁸,a,c
Chemistry Department, Bar Ilan University, 52900 Ramat Gan, Israel

(Received 4 January 2006; accepted 5 April 2006; published online 5 May 2006)

Photocurrent transients were investigated on pressed and sintered porous TiO₂ layers which were immersed in electrolyte during the measurements. Unpressed porous TiO₂ layers were prepared by electrophoretic deposition. The porosity of the layers was changed systematically by pressing. The surfaces of the TiO₂ nanoparticles and the intimate contact between them were identically conditioned by sintering in air at 450 °C after pressing. With decreasing porosity, the diffusion coefficient increased while the electron lifetime decreased. The results are discussed on the base of the change of the mean coordination number between TiO₂ nanoparticles. © 2006 American Institute of Physics. [DOI: 10.1063/1.2201045]

The transport behavior of excess charge carriers in porous semiconductors is of great practical and fundamental interest, for various applications such as sensors¹ or dye-sensitized solar cells.² In porous silicon,³ for example, the photoluminescence increases with decreasing conductivity⁴ since excess electrons and holes recombine radiatively with each other in the same spatial unit. The situation is different for porous TiO₂ layers immersed in electrolyte. In such case, excess electrons and holes are trapped very rapidly at different sites and screened from each other in the Debye screening length. Further, holes are lost into the electrolyte while electrons can diffuse through a porous TiO₂ layer. Porous TiO₂, in comparison with porous Si, consists of a porous network of sintered nanoparticles. Thus, the porosity can be changed without changing the size of the interconnected nanoparticles in porous TiO₂ layers. With respect to a random packing model, the mean coordination number between nanoparticles is given by the porosity. The porosity is strongly correlated with the diffusion coefficient due to percolation.⁵ The critical porosity, above which electrical transport becomes impossible, amounts to $P_C=0.76$ for porous TiO₂ layers.⁶

In this work, porous TiO₂ layers immersed in electrolyte are used as a model system to study the influence of the morphology of porous semiconductors on the diffusion of excess charge carriers. Diffusion coefficients are measured by time resolved photoconductivity.

Recently, electrophoretic deposition (EPD) was applied to produce porous TiO₂ layers without using an organic binder.⁷ After EPD, the TiO₂ nanoparticles are not yet well sintered to each other. Therefore, the porosity of the porous TiO₂ layers can be systematically changed by pressing. In our experiments, porous TiO₂ layers with an initial thickness of $L=9.7 \mu$m were densified to thicknesses of 8, 6.9, 6.4, and 6.1 μm by pressing with 0.2, 0.4, 0.6, and 0.8 tons/cm² (the pressure is given in tons per cm²). The thicknesses were measured with a step profiler. The porosity of the unpressed porous TiO₂ layer was $P=0.6$. Therefore, the porosities amounted to 0.51, 0.44, 0.39, and 0.36 for the porous TiO₂ layers pressed with 0.2, 0.4, 0.6, and 0.8 tons/cm². The porosities of 0.6, 0.51, 0.44, 0.39, and 0.36 correspond to the mean coordination numbers (K) of 4, 4.9, 5.9, 6.8, and 7.4, in accordance to Ref. 5. Both the pressed and unpressed layers were identically sintered in air at 450 °C for 30 min. The porous TiO₂ layers with different porosities, were prepared on conductive electrodes (glass coated with SnO₂:F, TEC15). The transient photocurrent (PC) measurements were performed in a two-electrode cell (Pt wire as counter electrode) with a quartz window. A 0.5M NaCl, pH=2.0 (HCl) solution was used as conductive electrolyte. The porous TiO₂ layers were sealed with an O ring (diameter of 7 mm) and illuminated from the electrolyte side with pulses of a N₂ laser (wavelength of 337 nm, pulse duration of 5 ns, repetition rate of 1 Hz, and intensity of 40 μJ/cm²). The photocurrent transients were recorded with a 100 MHz personal computer card (gage) via a 50 Ω resistance.

Figure 1 shows photocurrent transients of the unpressed porous TiO₂ layer and of the pressed porous TiO₂ layers with porosities of 0.51, 0.44, 0.39, and 0.36. In the following, only the part between 10^{-4} and 10^{-1} s, which is related to electron diffusion, will be considered (the so-called diffusion

⁹Authors to whom correspondence should be addressed.
¹Electronic mail: dittrich@hmi.de
²Electronic mail: zabana@mail.biu.ac.il

FIG. 1. Photocurrent transients of the unpressed porous TiO₂ layer (porosity 0.6) and of the pressed porous TiO₂ layers with porosities of 0.51, 0.44, 0.39, and 0.36. The arrow marks the onset of the laser pulse.
peak). The increasing parts of the transients shift to shorter times with decreasing porosity due to faster diffusion. The faster diffusion is induced by the reduced thicknesses after pressing and by the increased diffusion coefficients. The decreasing parts of the diffusion peaks of the layers with $P = 0.44$, 0.39, and 0.36 shift slightly to shorter times in comparison with the transients of the porous TiO$_2$ layers with $P = 0.6$ and 0.51. This shift is related to a decrease of the electron lifetime.

Figure 2 depicts the measured PC transients corrected to the base line in a log-linear scale. At longer times, a decay time constant has to be related to a qualitative change of the transient process. The defects are not healed during the sintering process. Therefore, the increasing parts of the PC transients shift to shorter times with decreasing porosity. As remarked, the increasing part of the PC transients can be analyzed as well by using the approximation,

$$i(L,t) = \frac{qN_0L}{2 \cdot \sqrt{\pi Dt}} \exp\left(-\frac{L^2}{4Dt}\right).$$

where q is the elementary charge and N_0 is the initial electron concentration. In such a case, a maximal diffusion coefficient can be defined. The values of the maximal diffusion coefficients amount, for example, to 2.5×10^{-5} and 8×10^{-5} cm2/s for the samples with the highest and lowest porosities. The difference between D_{eff} and the maximal diffusion coefficient is caused by dispersive transport.

The values of the parameters D_0 and α are 2.5×10^{-4} cm2/s and 1.8. If analyzing the maximal diffusion coefficient instead of D_{eff}, the values of α and D_0 amount to 2.2 and 8 $\times 10^{-4}$ cm2/s. The values of α and D_0 will depend sensitively on the value of P_C. Depending on the applied structure, the value of P_C can change, for example, between 0.69 and 0.75. For comparison, α was 0.82 for screen printed porous TiO$_2$ layers. A value of α of the order of 2 seems reasonable from percolation theory.
layers since the diffusion coefficient obtained for the unpressed layer does not follow the common dependence described in Eq. (4) for the pressed layers. This seems not surprising because pressing may strongly influence D_0 in general due to cracking of the initial structure. A question is whether pressing might change or not the percolation threshold due to introduction of a certain anisotropy.

The coordination number between TiO$_2$ nanoparticles has been changed systematically by pressing porous TiO$_2$ layers as mentioned above. We found a correlation between the porosity, i.e., the mean coordination number, and the diffusion coefficient for porous TiO$_2$ layers which were densified by pressing. The results are of interest, for example, for the further development of dye-sensitized solar cells in which nanoporous TiO$_2$ layers are used.

The authors are grateful to S. Dube and S. Bönisch from the Hahn-Meitner-Institute for implementing a system for logarithmic transient measurements. One of the authors (A.Z.) acknowledges the financial support provided by the Israel Science Foundation founded by The Israel Academy of Science and Humanities.

1See, for example, W. Göpel and G. Reinhardt, in *Sensors Update*, edited by H. Baltes, W. Göpel, and J. Hesse (VCH, Weinheim, 1996).