Öffnet in neuem Fenster Opens in a new window Öffnet externe Seite Opens an external site Öffnet externe Seite in neuem Fenster Opens an external site in a new window

Energy storage materials (Cathode materials for Li-S batteries, supercapacitors)

1. Cathode materials for Li-S batteries

Metal oxide nanoparticles and free-standing porous carbon monolith can be synthesized through polymer assisted colloidal approaches. The well-defined nanostructures can be applied as cathode materials in Li-S batteries with excellent electrochemical performance. For example, Magnéli phase Ti4O7 particles with interconnected-pores structure can be synthesized by using porous PS-P2VP particles as template. They can provide mesopores for physical confinement and polar surface for chemically bonding with polysulfides to suppress their dissolution. Moreover, light-weight and mechanically stable carbon monoliths have been prepared from a hydrothermal method. This binder-free monolith have been used as model cathode material for a multidimensional operando analysis.

References

  1. S. Mei, C.J. Jafta, I. Lauermann, Q. Ran, M. Kärgell, M. Ballauff, Y. Lu, Advanced Functional Materials 2017, 27, 1701176 .
  2. Y. Yang, S. Risse, S. Mei, C.J. Jafta, Y. Lu, C. Stöcklein, N. Kardjilov, I. Manke, J. Gong, Z. Kochovski, M. Ballauff, Energy Storage Materials 2017, 9, 96-104.

2. Supercapacitors

Dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized using gibbsite nanoplates as templates. The resulted 2D hollow carbon nanoplates bear hexagonal morphology with fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.

Bild 3 - enlarged view

Bild

Publications

  1. J. Cao, C. J. Jafta, J. Gong, Q. Ran, X. Lin, R. Félix, R. G. Wilks, M. Bär, J. Yuan, M. Ballauff, Y. Lu, ACS Applied Materials & Interfaces 2016, 8, 29628-29636.