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Zusammenfassung

Der Freie Elektron LASER (FEL) hat sich bereits als die vierte Generation der Synchro-
tron-Lichtquellen etabliert. Durch seine speziellen Eigenschaften bietet er bislang einzig-
artige Anwendungsmöglichkeiten in Forschung und Entwicklung. In diesem Zusam-
menhang gewinnen besonders kurze Pulse mit hohen Photonenenergien, also kurze
Wellenlängen, immer mehr an Bedeutung. Deshalb sind gegenwärtig FEL-Quellen im
Gespräch, die diese kurzen, hochenergetischen Strahlen bieten. Der kaskadierte HGHG-
FEL, der unter anderem für BESSY-FEL, STARS [1],[2], und für FLASH II [3],[4],
vorgesehen wurde, ist ein viel versprechendes Konzept. Im Allgemeinen werden die
höheren Spitzenbrillanzen, die charakteristisch für FEL-Strahlung sind, durch höhere
Spitzenströme pro Elektronenpaket (Bunch) erzeugt. Dabei sind hohe Bunchladungen
wie z.B. 2.5nC bei einer Teilchenenergie von 2.3 GeV für den BESSY-FEL üblich. Bei
derart hohen Ladungsansammlungen können die Wechselwirkungen der Elektronen un-
tereinander und mit ihrer Umgebung nicht mehr vernachlässigt werden. Der Bunch in
kaskadierten HGHG-Strukturen ist für mehrfache Seed- und Emissionsprozesse aus-
gelegt, wodurch im Allgemeinen die Bunchlänge viel größer als der Bunchquerschnitt
ist. Auch werden immer höhere Teilchenenergien angestrebt. Jedoch haben die transver-
salen und longitudinalen Raumladungskräfte einen nicht zu vernachlässigenden Ein-
fluss auf die Entwicklung der Buchdimensionen und somit auf die FEL-Strahlqualität.
Die Untersuchung von Raumladungseffekten erfolgt mit Simulationsprogrammen. Da
der Einsatz von ”Teilchen Tracking”-Programmen, wie ASTRA und GPT, sehr CPU-
zeitintensiv ist, wurde für schnelle Abschätzungen der Raumladungseffekte in kas-
kadierten HGHG-FEL Strukturen im Rahmen dieser Arbeit das Programm P12 ent-
wickelt. P12 verarbeitet die Effekte der transversalen Raumladung in linearer Strahlop-
tik, wodurch die Entwicklung der Bunchdimensionen entlang der Strahloptik (Lattice)
beobachtet werden können. In kombinierter Anwendung von P12 mit anderen Simula-
tionsprogrammen lassen sich die verschiedenen Ordnungen der Raumladungseffekte un-
terscheiden und geeignete Kompensationsmethoden entwickeln. Im Folgenden werden
die theoretischen Grundlagen für das Programm P12 beschrieben und die Annahmen,
die bei der Erstellung von P12 nötig waren, werden in Detail aufgezeigt und Gründe
für diese Nährungen erläutert. Da der Undulator ebenfalls ein optisches Element mit
Fokussierungseigenschaften darstellt, wurden die Fokussierungseigenschaften der Un-
dulatoren in spezielle Unterprozeduren berücksichtigt. Vergleiche der P12-Resultate mit
den Resultaten gängiger Simulationsprogramme, wie ASTRA und Trace3D, beweisen
die Anwendbarkeit des Programms P12. Abschließend wird anhand von Beispielen der
Effekt der Raumladung auf die Ausgangsleistung von FELs, FLASH II and STARS,
mit Hilfe des Programms Genesis1.3 demonstriert.





Abstract

Free Electron Lasers (FEL) have been already established as the fourth generation
light-sources. Their characteristics offer unique possibilities for many applications in
material science. In particular, there are a large number of experiments demanding
short FEL pulses with high photon energies. Seeded FEL-schemes provide this superior
radiation. Such a promising FEL-scheme is the multi-stage HGHG-structure (High Gain
Harmonic Generation), which is proposed for the BESSY-FEL, STARS, and FLASH
II. In general, the high peak brilliance, which is a characteristic of a single pass FEL,
is generated by a high peak current. So, a high bunch charge is needed, e.g. 2.5nC
with an average particle energy of 2.3GeV for BESSY FEL. At this very high charge
density the interactions of the electrons with each other and their environment cannot
be neglected anymore. In the HGHG-FEL scheme the bunch is generated for several
seed and emission processes. Thus, the longitudinal dimension of the electron bunch is
much bigger than the dimensions of its cross section. Furthermore, there are also higher
average particle energies aspired. Nevertheless, the transverse and longitudinal space
charge effects produce a significant impact on the development of the bunch properties
as well as on the resulting FEL performance. For the investigation of the space charge
effects simulation programs are required. Since the use of particle tracking programs,
like ASTRA and GPT, is very CPU time-consuming, a program for fast estimations of
space charge effects in multi-stage HGHG-FELs was required. As a result of this work
the program P12 for the fast estimations of space charge effects at multi-stage HGHG-
FEL is developed. It copes with transversal space charge effects in a linear manner,
whereby the development of the bunch dimensions can be observed. The combined
employment of P12 and other space charge calculating programs allows to distinguish
different orders of space charge effects and to develop techniques for their compensation.
In the following the theory used for creating the program P12 is presented and the
assumptions underlying P12 are discussed in detail as well as the motivation to use
them.
Since the FEL-process takes place in undulators, the optical features of undulators have
to be recognised as well. Special subroutines in P12 cope with the undulator focusing in
different selectable regimes, which are also discussed. The comparison of the results of
P12 with the results of established space-charge calculating programs, like ASTRA and
Trace3D, proves the applicability of P12. The impact of the transversal space charge
effects on the performance of the FELs FLASH II and STARS is demonstrated with
Genesis1.3 in the concluding section.
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Introduction

Nowadays, Free Electron Lasers (FEL) are established in the ensemble of
light-producing devices. Especially the single-pass high-gain FELs are of par-
ticular interest for modern experiments. The single-pass FEL radiation-output
is generally characterised by an extreme high peak brilliance and short pulse
length. Furthermore, in dependency of the layout of the facility, it is tunable
in wavelength and in polarisation. Due to these features new experiments are
possible.

The observation of molecular oscillations in IR-range needs extreme high in-
tensity [5], whereby the use of FELs is enforced. Another application is the re-
search of fast running biological process in X-ray regime [6],[7]. X-ray radiation
damages biological materials and therefore it influences the biological processes.
Sufficient high intensity shortens the exposure time and offers the possibility for
an instantaneous photography of the current process. In addition there are also
proposals for X-ray-holography [7], whereby a high coherence is required, which
is given by using seeded FEL radiation. Not only the number of FEL applications
increases rapidly, but the demands on the performance of FELs increases as well.
The properties of the FEL output depend sensitively on the characteristics of the
electron beam. The working principle of the FEL bases on the fact, that elec-
trons and radiation interact. In general, this takes place in an undulator, which
is an alternating sequence of dipole magnets. The main task of this magnetic
arrangement is to change the transversal velocity of electrons. So the electrons
can couple to the transversal component of the radiation electric field. This inter-
action causes an energy transfer between electrons and radiation field. Electrons
can win or loss energy depending of their phase. In general, both effects occur at
the same time, but with different efficiency depending on the radiation.

A criterion of the FEL performance is the ’Pierce’-parameter, which provides
informations about the efficiency of the FEL-interaction. The Pierce parameter
is a function of the electron density, undulator parameter and the average elec-
tron energy [8]. The electron density is influenced on its way from the rf-gun to
the FEL-undulators. Its generation and acceleration are particularly crucial. In-
side the ’gun’, electrons are emitted from a cathode and accelerated by rf-fields.
This initial charge distribution has already an effect on the later FEL-process,
as it limits the minimum possible beam emittance. The bunch is accelerated by
rf-fields, which can be used to establish an energy chirp along the bunch. This en-
ergy chirp is utilised for ’bunch compression’, which increases the charge density.
The high charge density gives rise to another unwanted effect: the space charge
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Chapter 1: Introduction

effect. It is the interaction of charged particles inside the bunch with each other
and with their environment. In general, the particle position inside the bunch de-
termines the space charge force experienced by a single particle. The relationship
between particle position and space charge force is only in special rare cases lin-
ear. Space charge effects, like repulsing forces of electro-magnetic fields and image
charges, cause an expansion of the bunch. In order to compensate these expan-
sions, focusing elements have to be adapted in the layout of the facility. With
the help of fast calculating, analytical programs the impacts of space charges
can be estimated and compatible modifications of the layout can be created.
Afterwards the modifications have to be tested in detail with computationally-
expensive particle-tracking programs. The results of these programs are marked
by the underlying approximations and assumptions. The scope of this work is
the investigation of the transversal space charge effects in the FEL-undulator-
sections. Although tracking programs can be used for this investigation and for
lattice design, they are less suitable, due to their CPUs-time-cost. Therefore, as
a part of this work the simulation program ’P12’ is created, which serves as a
fast calculating program to investigate and to design the lattice layout of the
undulator sections of FEL-facilities. In addition to the estimation of transversal
space charge effects another application area of P12 is the simulation of the ef-
fect of undulator focusing on the optic. The beam optics including space charge
effects as well as a detailed view of undulator optics is given in the second chap-
ter. Chapter three describes details of the program P12. In the fourth chapter
the results of the space-charge calculations of P12 are compared to the results of
established programs. The impact of transversal space charge effects at HGHG-
FEL is investigated in the fifth chapter. In the final sixth chapter a conclusion is
given. In the appendix detailed discussions and developments of particle optics,
a review of features of different distributions and a short description of the field
distribution of the triaxial uniform charged ellipsoid are presented.
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2

Theory

The scope of this work is the investigation of the impact of transversal space
charge effects on beam optics in FELs. These effects have to be considered for
lattice design and performance calculations. Obviously, a prerequisite for space
charge calculations in accelerators is the computation of particle beam optics
without space charge effects. Thus, the first part presents briefly basics of particle
optics. It summarises a detailed discussion of particle optics, which is given in
app. A, and describes the impact of different beam optic elements on particle
beams. The second part of this chapter deals with the treatment of undulators
in beam optics. Undulators are main components of every Free Electron LASER
(FEL). In those elements the interaction of particle beam and light takes place.
Undulators are magnetic devices, whose field configuration induce a continuous
change of the propagation direction. The performance of FELs depends on the
path of electrons through the undulator as well as the properties of the bunch.
Moreover, undulators are also optical elements, whose characteristics influence
the development of bunch dimensions. These optical features are discussed in the
second part of this chapter. At the beginning of the third part an introduction
presents different kinds of space charge effects. A review of different regimes of
collective space charge effects and their approximations in simulations are given.
In analytical simulations the model of the ’equivalent beam’ is often used. It is
based on a beam model with an uniform charge distribution. This model as well
as its connection to real beams is presented in the following. Afterwards, different
techniques of implementation of space charge effects in simulation programs are
discussed. These techniques leads to special treatments of coupling elements. The
bending magnet, as an example of coupling elements, is discussed in more detail.

2.1 Particle Optics

Influencing the motion of charged particles by the means of electro-magnetic fields
is the subject of the accelerator physics. Using these fields, a bunch of charged
particles can be accelerated, decelerated, bended, focused and defocused. The
solution to the equation of motion of charged particles in electro-magnetic fields
is used to define particle optics. The linearised equations of motion in transversal
planes are given by:
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Chapter 2: Theory

x′′(s) + (
1

R2(s)
− kx(s))x(s) =

1

R(s)

∆p

p
, (2.1)

y′′(s) + ky(s)y(s) = 0. (2.2)

Note that, a comoving coordinate system is used. R and k are parameters of optic
elements and stand for curvature radius R and focusing strength k. The equations
above are valid for each element (drift, bend,. . .) in a linear manner. They can
be solved once the specific characteristic of the considered magnetic element,
e.g. focusing strength, is given. It is convenient to use the matrix formalism to
calculate the effect of these elements on a particle in the 6-dimensional phase
space (two canonical coordinates in each of the three dimensions). A detailed
derivation is presented in [9]. In the following the impacts of the most relevant
elements, drift, bend and quadrupole, are described.

Drift

The element ’drift’ describes a space without external fields. Thus, single parti-
cles will not experience any kind of redirection. The particle momentum remains
constant. In a drift the deviation of the particle coordinates to the coordinates of
the reference particle induces only displacements. The development of the parti-
cle coordinates due to a drift can be described by the following matrix.

RDrift =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

γ2

0 0 0 0 0 1

 (2.3)

Bend

Often in accelerators the design trajectory has to be a closed loop. The necessary
bending is achieved by dipole magnets, short bends. In first approximation a bend
is realized by a homogeneous magnetic field. The change of particle coordinates
induces a focusing effect, called ’weak focusing’. There is also a dispersion effect,
i.e. particles with different energies move on different paths through the bend.
The following matrix describes the impact of a sector magnet, short Sbend. This
kind of bend realized, if the beam enters and leaves the magnetic field perpen-
dicular. If a beam did not enter perpendicular, particles with displacements take
a different path through the bend. Due to the additional pathlength another fo-
cusing effect occurs, called ’edge’ focusing, see app. A:

(2.4)
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2.2 Undulators

RSBend =



cos( s
R) Rsin( s

R) 0 0 0 R(1− cos( s
R))

−1
R sin( s

R) cos( s
R) 0 0 0 sin( s

R)
0 0 1 s 0 0
0 0 0 1 0 0
−sin( s

R) −R(1− cos( s
R)) 0 0 1 − s

γ2 + (Rsin( s
R)− s)

0 0 0 0 0 1

 .

R is the curvature radius,
s is the pathlength along the trajectory,
s
R

corresponds to the bending angle as well as the bending phase,
γ is the relativistic gamma factor,

Redge =



1 0 0 0 0 0
tan(ϕ)

R 1 0 0 0 0
0 0 1 0 0 0
0 0 − tan(ϕ)

R 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(2.5)

The curvature radius R can be calculated from the field strength and particle
energy. ϕ corresponds to the angle distinction of normal vector and beam prop-
agation vector. The effect of edges can be focusing as well as defocusing. For
the reference particle the longitudinal dimension of edges is infinitesimal [10].
Thus, the matrix elements R12, R34 and R56 vanish. Rbends are composed of a
combination of Sbends and edges.

Quadrupole

In contrast to a lens in light optics, quadrupoles focus in one of the transversal
planes and defocus in the other one. A detailed description is also given in app. A.
The following transfermatrix describes the impact of a quadrupole, which focuses
in x-direction and defocuses in y-direction. In general, the focusing strength in
one direction and the defocusing strength in the other are identical.

(2.6)

Rquadrupole =



cos(ϕx) 1√
|kx|

sin(ϕx) 0 0 0 0

−
√
|kx|sin(ϕx) cos(ϕx) 0 0 0 0

0 0 cosh(ϕy) 1√
|ky |

sinh(ϕy) 0 0

0 0
√
|ky|sinh(ϕy) cosh(ϕy) 0 0

0 0 0 0 1 s
γ2

0 0 0 0 0 1


ϕi =

√
|ki|s stands for the focusing phase.
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Chapter 2: Theory

2.2 Undulators

Undulators are magnetic devices, used for generation of synchrotron-light. Due
to their special field configuration, the charged particle are forced on a special
trajectories through the undulator. They are ’wiggling’ through the undulator. In
an undulator the particles change continuously the direction of their propagation.

Figure 2.1: Planar Undulator with a Possible Particle Path
The different magnetic poles are marked by different colours. A possible path of an
electron beam is added (black curve).

For the production of synchrotron radiation electrons are used, because their mass
is lower than the mass of other known charged single particles. The properties
of the emitted light depend on the path of electrons through the undulator, i.e.
it depends on the design of the undulator. The plane of polarisation of light is
defined by the plane of the oscillating motion of the electrons. In a planar un-
dulator the electrons ’wiggle’ in one plane, figure 2.1, whereby the polarisation
of light becomes linear. In the case of a helical motion inside the unduator the
polarisation of light becomes elliptical or circular. Such a motion can be created
for example by shifting of magnet rows as it is the case in APPLE-devices [11].

Figure 2.2: Helical Undulator Design
The calibration of gapsize and shifting leads to complex field distributions, which can
effect an elliptical motion of electrons.
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2.2 Undulators

The exact field configuration can become very complex. J.Bahrdt and G.Wüste-
feld modelled exact field configurations in the transversal plane in 2× 20 Fourier
components [12]. Longitudinally, the magnetic field strength does not change in
a pure sinusoid manner. The deviation from the pure sinus depends on the ratio
of the undulator period length and gapsize. Self-evident, for an approximation in
linear optics most of such higher order effects have to be neglected.
The schematic presentations of the undulators, figure 2.1 and figure 2.2, cor-
respond to real devices. They consist of sequences of alternating Rbends. The
fringing fields of the bends overlaps. In first order approximation those fringing
fields are neglected. Thus, the undulator simplifiers to an alternating series of
Rbends.

Rbend Approximation

In a first approach the complex field configuration of the undulator can be ex-
pressed as a series of Rbends. Each undulator period is modelled by four Rbend
dipoles. The magnetic field strength of each bend is given by the undulator RMS
K value [9].

K =
eB0λ0

mc22π
√

2
(2.7)

The RMS K value is also known as the ’Wiggle-/Undulatorparameter’. Electrons
inside an undulator experience an alternating change of the bending forces. In a
first approximation it comes to an oscillating change of the transversal particle
position. The progress of change of the velocity is approximated by a wave with a
maximum elongation, which depends on constant parameters, like period length
λu , mass and average energy of electrons. Those parameters are combined to the
undulator parameter. In contrast to Sbends the beam does not enter and/or leave
the magnetic field perpendicular, so Rbends are marked by entrance and exit an-
gles, see app. A. A beam enters the first Rbend perpendicular and leave with an
angle of emergence, which is identical with the angle of bending. The next Rbend
will be entered with the exit angle of the previous bend. Due to the alternating
series of Rbends the electron beam ’wiggles’ through the undulator. The weak
focusing of the bends is (over)compensated by the effect of edge focusing. Thus,
the plane of bending is featured by a weak defocusing. Furthermore, an addi-
tional advantage of the Rbend approach is, that the dispersion in an undulator
is calculated implicitly correct in the linear manner. The corresponding matrices
are already discussed in section 2.1. The approximation of elliptical undulators
at the next subsection is similar to this Rbend approximation. For a comparison
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Chapter 2: Theory

of both approaches the following matrices are shown again.

RSBEND =



cos( s
R) Rsin( s

R) 0 0 0 R(1− cos( s
R))

−1
R sin( s

R) cos( s
R) 0 0 0 sin( s

R)
0 0 1 s 0 0
0 0 0 1 0 0
−sin( s

R) −R(1− cos( s
R)) 0 0 1 − s

γ2 + (Rsin( s
R)− s)

0 0 0 0 0 1



Redge =



1 0 0 0 0 0
tan(ϕ)

R 1 0 0 0 0
0 0 1 0 0 0
0 0 − tan(ϕ)

R 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


R is the bending radius,
s
r

corresponds to the curvature angle,
γ is the relativistic gamma parameter and
ϕ is the angle of entering.
A sequence of an undulator period is described by:

Mλ/4(Φ) = Redge2 ·Rsbend(Φ) ·Redge1,

Mperiod = Mλ/4(Φ) ·Mλ/4(−Φ) ·Mλ/4(−Φ) ·Mλ/4(Φ).

The different signs in R(+/−) characterises the different bending directions.

Elliptical Undulator

The field configuration of an elliptical undulator forces the electrons on helical
trajectories. Dispersion tends to couple the motion in all three dimensions. Sim-
ilar to the approach of planar undulator, the elliptical undulators will be split
into a series of alternating Rbends. In contrast to the ’regular’ bends of planar
undulators the body of the Rbend-matrix consists of two bending planes. Thus,
the Sbend-part is defined by:

(2.8)

cos( s
R1

) R1sin( s
R1

) 0 0 0 R1(1− cos( s
R1

))
−1
R1

sin( s
R1

) cos( s
R1

) 0 0 0 sin( s
R1

)
0 0 cos( s

R2
) R2sin( s

R2
) 0 R2(1− cos( s

R2
))

0 0 −1
R2

sin( s
R2

) cos( s
R2

) 0 sin( s
R2

)
−sin( s

R1
) −R1(1− cos( s

R1
)) −sin( s

R2
) −R2(1− cos( s

R2
)) 1 R56

0 0 0 0 0 1


,

with R56 = −
√

((R1 · sin(s/R1)− s)2 + (R2 · sin(s/R2)− s)2) +
s

γ2
.
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2.2 Undulators

The same goes to the matrix of edges.

1 0 0 0 0 0
+ tan(ϕ1)

R1
− tan(ϕ2)

R2
1 0 0 0 0

0 0 1 0 0 0
0 0 − tan(ϕ1)

R1
+ tan(ϕ2)

R2
1 0 0

0 0 0 0 1 0
0 0 0 0 0 1


, (2.9)

Ri is the curvature radius for each plane,
s is the pathlength along the trajectory,
s

Ri
corresponds to the bending angle and

γ is the relativistic gamma parameter.
The approach is based on a separated treatment of the bending for each plane.
It is a superposition of two Rbends merged into one transfermatrix. The motion
in both planes are assumed to be independent, only the element R56 depends
on both motions simultaneously. The element R56 splits up into two parts. s

γ2

describes the longitudinal displacement based on the relativistic dilatation. The
other part manages the longitudinal displacement, which appears , if a beam is
bended. It describes the additional pathlength ∆s =

√
(∆x)2 + (∆y)2. The sec-

ond matrix is the fusion of the edge focusing matrices for both transversal planes.
A focusing effect of an edge in one plane is escorted from a defocusing effect in the
other one. In the case of a superposition of two edges the focusing and defocusing
effects in each plane will be overlaid, which leads to an effective (de-)focusing
values. This algorithm offers the potential to cope with most kinds of undula-
tors, regardless of their polarisations. Note that, this is an 1D-approximation.
For complex field distributions the approximation is only valid in a small region
around the undulator axis.

Genesis1.3 Undulator

Another approximation of undulator focusing is used in the FEL code Genesis1.3.
In Genesis1.3 the impact of undulators on trajectories is approximated by a focus-
ing strength(kundu). The focusing strength is a function of undulator parameters
as well as particle characteristics:

kundu =

(
2π · xkx ·Krms

λuγ

)2

. (2.10)

Undulator parameters are undulator period λu, undulator parameter Krms and
xkx ε [0, 1], which characterises different kinds of undulator types. The undulator
parameter Krms stands for the amplitude of the electron momentum oscillation.
In the case of a planar undulator the focusing plane is described similar to the
focusing plane of quadrupoles. In the other plane the undulator acts almost like a
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Chapter 2: Theory

drift. Genesis1.3 uses the equations of motion for the single particles, which are:

ϕu =
√
|kundu| · s,

x(s) = cos(ϕu) · x0 +
1√
|kundu|

sin(ϕu) · x′0,

x′(s) = −
√
|kundu|sin(ϕu) · x0 + cos(ϕu) · x′0,

y(s) = y0 + s · y′0,
y′(s) = y′0.

Undulator with End Pole

A special feature of every undulator is the ’endpoles’ [13]. Two periods are used
to centre the oscillating motion of the beam inside the undulator. While the beam
enters the undulator, it passes the first half period of endpoles, whose integrated
field strength amounts to a quarter of the main undulator strength. In the second
half period the integrated field strength increases to three-quarter of the main
undulator strength. Due to the resulting displacement the oscillation takes place
at the centred axis of the undulator. The second period of endpoles locates at
the end of the undulator. It cancels the displacement of the first endpoles at the
beginning of the undulator. Due to the second endpoles the beam is centred in the
beam pipe again. The endpoles split up to two different integrated field strengths.
The configuration can be achieved by a combination of a lower field strength with

Figure 2.3: Impact of Endpoles
Due to the endpoles the oscillating motion of the beam is centred at the undulator axes.

the same period length or by a shorter period length with the same field strength.
Lower field-strength arrangements are often used for permanent magnetic devices.
In the case of electrodynamic magnetic structures shorter period lengths are very
popular. This is based on magnetic characteristics, like hysteresis.
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2.3 Space Charge

2.3 Space Charge

The interaction of charged particles with each other and their environment via
electro-magnetic fields, is the subject of this section. A general introduction,
describing the fundamental concepts and assumptions regarding electro-magnetic
fields and space charge effects in accelerators, is given in the first part of this
section. Later then, the space charge effects as an impact of charged particle
distributions acting on themselves will be discussed.

2.3.1 Fundamentals

The force experienced by a charged particle, which is influenced by electro-
magnetic fields, is given by the Lorentz-force:

~F = q( ~E + ~v × ~B). (2.11)

A resting charged particle itself is a source of an electric field and if the particle
moves, it becomes a source of an additional magnetic field. The relation between
charges, currents, electric fields and magnetic fields is given by the following
Maxwell equations [14]:

∇ · ~E =
%

ε0

, (2.12)

∇× ~E = −∂ ~B

∂t
,

∇ · ~B = 0,

∇× ~B = µ0
~j +

1

c2

∂ ~E

∂t
.

The relation between the scalar potential Φ of an electric field and its source, the
charge distribution, is given by:

∇2Φ =
%

ε0

with (2.13)

~E = −∇Φ.

Φ(~r) is a scalar potential, which describes the potential energy of charged par-

ticles. The magnetic analogon to Φ is the vector potential ~A(~r). It is described
by:

~A(~x) =
µ0

4π

∫ ~j(~x′)

|~x′ − ~x|
d3x′ (2.14)

~B = ∇× ~A. (2.15)
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Self-Fields

From electrostatics it is known, that two resting charged particles with the same
sign of charge reject each other. So they split off with the force:

~F =
qaqb

4πε0rab

~er. (2.16)

The acting force depends linearly on the charges of both particles, qa and qb, and
decreases with their distance rab. In the case of a moving particle, the situation
changes.

Figure 2.4: Space Charge in Electrostatic Case
The force between two resting charged particles is defined by eq. 2.16.

Figure 2.5: Magnetic Field

The magnetic field is concentric to the cur-
rent.

Moving charges present a current I.
Each current generates a magnetic
field B. In steady state, i.e. when the
current density does not change nei-
ther its direction nor its magnitude,
the Biot-Savart-law gives the resulting
magnetic field:

~B(~r) =
µ0

4π
∇×

∫ ~j(~r′)

|~r − ~r′|
d3r′.(2.17)

In contrast to the repulsive effect of the electric field, the magnetic field induces an
attractive force. For relativistic particles the equivalence of the electrostatic case
in the centre of mass system (cms) and the electrodynamics in the laboratory-
system, becomes obvious. In other words, according to

Figure 2.6: Impact of Velocity

F (v) = F (0) · (1− β2) with β =
v

c

the force decreases, while the veloc-
ity increases, and vanishes for v → c.
If particles move with c (parallel and
in same direction), the time in cms
slow down due to time dilatation, as
shown left [15].
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The Environment

The interaction of charged particles with their environment is another aspect of
the space charge effects.

Figure 2.7: Particle-Wall-Interaction
The particle induces a charge separa-
tion inside the wall.

A classical example, applicable on charged
particles in a vacuum chamber, is plotted left
hand side. The charged particle rests near a
wall (Φwall = 0). Assuming, the wall is ex-
panded to infinity. Instead of coping with a
single charge and a wall, the wall can be re-
place by image charges. The combination of
charges and image charges has to meet the
boundary condition (Φwall = 0). The wall po-
sition is ~rwall = (0, 0) and the particle locates
at ~roriginal = (−x, 0).

For supplying the boundary condition an im-
age charge with the same charge value but op-
posite sign of charge is positioned at ~rimage =
(x, 0). Hence, the acting force can be calcu-
lated according to eq. 2.16. The wall-electron-
interaction is of particular interest in an ac-
celerator, as a bunch of charged particles, e.g.
electrons, interacts with the chamber wall.

Figure 2.8: Image Charge
The wall can be replaced by image
charges.

A simple model is an ensemble of charged par-
ticles in a conducting pipe, whereby a slowly
varying longitudinal bunch profile is assumed.
The longitudinal dimension of the bunch is
huge compared to the transversal ones. On
condition of neglected retardation effect it sim-
plifies to a two dimensional electrostatic prob-
lem. A detailed development is presented in
[14]. In a more careful treatment of this inter-
action, further aspects, like the electric con-
ductivity of the pipe, pipe profile, retarding

Figure 2.9: Bunch in Pipe
In this 3d case an image charge
density is required.

effects and repetition rate, have to be taken into account. It is called ’wake-fields’.
The issue of wake-fields is discussed in details in many publications, e.g. [15],[16].

Relativistic Effects

Two major different regimes depending on the particle velocity take place in the
investigation of space charge effects. For non-relativistic particles (first regime)
retarding effects can be neglected. The field calculation follows directly from the
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charge distribution. For complex charge distributions an analytical solution can
be approached by harmonic expansion.

For relativistic particles (second regime) the retarding effects have to be taken
into account. Every charge distribution creates electro-magnetic fields, which act
back on the distribution itself. Thus, for a solution both, field and distribution,
have to be considered simultaneously. The solution has to be self-consistent.

2.3.2 Charge Distribution Models and Space Charge Ef-
fects

Simulation codes, like ASTRA, calculate space charge impact in a self-consistent
manner by particle tracking. Unfortunately, those simulations require a lot of
CPU-time. For a fast pre-calculation some assumptions and approximations have
to be made, which are described in the following.
The pre-calculation of self-fields is connected with well chosen assumptions about
charge distribution in a well defined integration volume. In such models the sym-
metry of the charge distribution often determines the boundary condition of
the integration. An example is the triaxial ellipsoid with uniform or three di-
mensional gaussian charge distribution. Lapostolle discussed this model in [17].
In the present work transversal models are discussed, which are similar to the
known three dimensional, triaxial ellipsoid model. The development of the field
distribution of the three dimensional ellipsoid with uniform charge distribution
is presented in [18]. A short description is also given in appendix C. In the limit
of a small transverse cross section (compared to the longitudinal dimension), the
3 dimensional ellipsoid can be seen as a series of such similar transversal models.
This limit is satisfied in multi-cascade FELs.

Model of Uniform Charge Distribution

The field calculation starts with the Maxwell eq.s (2.12). In the case of an uniform
charge distribution, i.e. the distribution is uniform and homogeneous in all three
dimension, the charge density %0 is extractable from the integrals:∫∫∫

ellipsoid

%(~r)

ε0

d3r =

∫∫
surface

~E · d ~A, (2.18)

∫∫
cross section

µ0|~j|~e~v · d ~A =

∮
circumference

~B · d~s, (2.19)

with ~j(~r) = %(~r) · c · ~β. (2.20)

The charge density as well as the current density inside the ellipsoid determine
the field distribution on the surface (eq. 2.18 and 2.19). The integration limits
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relate on border of the ellipsoid. For HGHG-FEL the bunch profile is approached
by a cylinder. In eq. 2.18 the volume integration transforms into integration over
the lateral surface. It is:∫∫

surface

~K · d ~A =

lo∫
0

∮
C

~K · ~n dudl, (2.21)

where C is the circumference.

~K stands for any vector field. ~n marks the surface normal vector.
Unfortunately, there is no analytical expression for the circumference of an ellipse.
If the relation of the semi axis (a, b) is known, the circumference ascertains by
numerical elliptical integrals. An approach for circumferences of ellipses is given
in [19]:

u = π(a + b) · [1 +
λ2

4
+

λ4

64
+ · · · ], (2.22)

with λ =
a− b

a + b
. (2.23)

As shown in [18], it is possible to avoid this ’problem’ by a special coordinate
transformation (in 3D). Instead of using the more in common elliptical coor-
dinates, the coordinates are expressed as a combination of zeros of the profile
function, eq. 2.24, and the dimensions of the semi axes (a, b, c):

f(s) =
x2

a2 + s
+

y2

b2 + s
+

z2

c2 + s
− 1, (2.24)

ϕ(s) = (a2 + s)(b2 + s)(c2 + s). (2.25)

This simplifies the determination of the electric fields to a one-dimensional inte-
gration:

Ex = 2πabc%0x

∞∫
0

ds

(a2 + s)
√

ϕ(s)
. (2.26)

The other electric fields in y- and z- direction calculate similar to Ex by replacing
a by b and c inside the integral of eq. 2.26 as well as x by y and z. Those electric
fields relate to a triaxial ellipsoid with uniform charge distribution in its centre
of mass system.
A two dimensional model of this approach can also be based on the assumption
of an uniform charge distribution. The longitudinal axis of the triaxial ellipsoid
increases to infinity, thus c � a, b. Any dependency of c in eq. 2.26 vanishes.
The triaxial ellipsoid becomes a continuous beam with constant current and an
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Figure 2.10: Model of a Triaxial Ellipsoid

The triaxial ellipsoid is characterised by three different semi axes. Therefore, the profile
of the ellipsoid can be similar to the profile of a zeppelin.

elliptical cross section. In this limit the profile function as well as ϕ(s) simplifies
to:

f2D(s) =
x2

a2 + s
+

y2

b2 + s
− 1, (2.27)

ϕ2D(s) = (a2 + s)(b2 + s). (2.28)

A similar coordinate transformation yields the expression for the coordinates:

x2 =
(a2 + λ)(a2 + µ)

a2 − b2
, (2.29)

y2 =
(b2 + λ)(b2 + µ)

b2 − a2
. (2.30)

λ and µ represent the zeros for the ’new’ profile function eq. 2.27. Due to the limit
of the longitudinal dimension, c → ∞, the charge density and the longitudinal
dimension in eq. 2.26 will be replaced by an average current I and the particle
velocity v. The distribution function n(x, y) along the cross section was already
extracted:

Ex =
I

2ε0v
abx

∞∫
0

n ds

(a2 + s)
√

ϕ(s)
. (2.31)

Different charge distributions inside the cross section, i.e. integration surface,
are discussed in [20]. In the case of an uniform distribution the function n(x, y)
becomes a constant and can be extracted form the integral:

n(x, y) =
1

πab
. (2.32)
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The integral becomes:

Ex =
I

2πε0v
x

∞∫
0

ds

(a2 + s)
3
2

√
(b2 + s)

. (2.33)

From this the expressions of the electric fields in x- and y-direction follow:

Ex =
I

πε0v

x

(a + b)a
, (2.34)

Ey =
I

πε0v

y

(a + b)b
. (2.35)

These fields corresponds to the particle ensemble in its centre of mass system.
The impact of the particle velocity causes a counteracting magnetic field. The
transformation from the centre of mass frame to the laboratory frame leads to an
additional factor 1

γ2 . As a conclusion of eq. 2.34 and eq. 2.35 the resulting force
on a particle with the charge e in the laboratory system becomes:

~Fsc =
eI

βcε0π(a + b) γ2

 x
a
y
b

0

 . (2.36)

A important characteristic is, that the magnitude of the resulting force is a func-
tion of the particle energy. Furthermore, there are no correlations between dif-
ferent planes. In each transversal plane the resulting space charge force linearly
depends on the particle position. That means, that particles near the border ex-
perience another magnitude of force than particles resting close to the centre of
the cross section. Due to the space charge effects, any uniform charge distribu-
tion becomes inhomogeneous. In the following subsection, the requirements for a
discussion of space charge impacts on non-homogeneous charge distributions will
be shown. In order to simplify the discussion, a circular symmetrical bunch cross
section is assumed.
Circular Symmetrical Cross Section & Uniform Charge Distribution
The calculation is performed in laboratory system. The additional factor 1

γ2 is
expected from the combined impacts of the electrostatic fields and the magnetic
fields on charged particles. The impact of different charge distributions is dis-
cussed for the special case of a circular transverse cross section, radius = a. Due
to its symmetry the fields can be calculated directly from eq. 2.18. The electric
field is parallel to the normal vector. Thus, the electric-field projection in eq. 2.18
is identical with the exact field configuration. The same applies to the magnetic
field. In this model the particle propagation vector is defined by:

~βc ≈ ~vs, (2.37)
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where s characterises the direction along the design path.
The eq.s 2.18 and 2.19 simplify to:

%0

ε0

∫∫∫
cylinder

d3r = Er

∫∫
surface

dA, (2.38)

µ0|~j|
∫∫

cross section

dA = Bϕ

∮
C

ds, (2.39)

where c is the circumference of the cross section. The charge distribution and
current density will be expressed by the average current I. It is:

I =

∫
jdA =

∫
%βcdA. (2.40)

The resulting fields are :

Er =
I

2πa2ε0βc
r, (2.41)

Bϕ =
µ0I

2πa2
r, (2.42)

where r is the particle position.
The transverse force is given by a combination of eq. 2.11 and eq. 2.37.

~Fsc = e · ( ~E + c · ~β × ~B)

= eE(1− β2)~e~r

=
eI

βcε02πa2 γ2

 x
y
0

 . (2.43)

Gaussian Charge Distribution
In contrast to the uniform distribution the gaussian distribution is even more
realistic in storage rings, but it does not seem to be an exact model. At the tails
of the distribution realistic bunches often show a halo. That means, the charge
distribution does not vanish so rapidly as in the gaussian case. The calculation
of the gaussian distribution is performed in the same manner as in the case
of the uniform distribution. By assuming the rotational symmetry, the charge
distribution is defined by:

%(r) =
I

βc2πσ2
e−

r2

2σ2 . (2.44)

The resulting fields are marked by nonlinear characteristics:

~E =
I

βc2πε0

1

r
(1− e−

r2

2σ2 ) · ~er, (2.45)
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~B =
I

c22πε0

1

r
(1− e−

r2

2σ2 ) · ~eϕ. (2.46)

The space charge force results to:

~F =
eI

βc2πε0γ2

1

r
(1− e−

r2

2σ2 ) · ~er. (2.47)

In contrast to the uniform distribution, the gaussian distribution is characterised
by a nonlinear behaviour. Although only a homogeneous charge distribution cre-
ates self-fields with a linear dependency on the coordinates, one can assume a
linear dependency in the core region for gaussian distributions as well. A linear
approach for the gaussian space charge force corresponds to the calculated force
till about 0.8 σ.

Figure 2.11: Space Charge Force of Gaussian Distribution and the Linear
Approximation

This plot shows the force, produced by space charge effects of a gaussian charge dis-
tributions versus the particle position. The linear approach fits the exact force in the
range of −0.8σ to 0.8σ.

Generally, it is accepted that the linear part of any internal and external forces
dominates the development of the second moments of a distribution. Beyond
that, the actual distribution seems to be less important than the RMS-values.
The development of the second moments (RMS/envelope) of different distribu-
tion is very similar. This leads to the development of an ’equivalent uniform
beam’ model [21],[16], which can be used for pre-calculation of a realistic beam
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distribution. The second moments of the equivalent uniform beam correspond to
the second moments of the exact charge distribution. The second moments of
several distributions can be found in app. B. The equation 2.24 determines the
profile of the equivalent uniform beam in three dimensions, and the equation 2.27
in two dimensions. The semi-axes are defined as:

a = σx ·
√

5,

b = σy ·
√

5,

c = σz ·
√

5.

σi are the RMS-values, which are given by the exact charge distribution.
So far, a very long bunch was assumed. In this case the impact of the longitudinal
dimension as well as longitudinal self-fields are neglected. If the bunch becomes
short and the longitudinal dimension of the bunch reaches the same magnitude
as the dimension of the cross section, the bunch profile becomes crucial.
The ’Space Charge Form Factor’ f modifies the values of the self-fields in each
direction. It is determined by the ratio of the bunch length and the dimension of
the cross section.

Figure 2.12: Space Charge Form Factor

The space charge form factor describes the impact of the bunch profile on the space
charge fields. A criterion is the ratio of the bunch length and the dimensions of the
bunch cross section.

The longitudinal space-charge field linearly depends on the space-charge form-
factor f , whereas the transversal fields linearly depend on (1−f) [22]. Lapostolle
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also pronounced these modifications of the field strengths [17]. The counter part
of a continuous beam is an infinitesimal long beam or even more a disc. In this
case the impact of the transversal space-charge fields vanishes. The impact of the
longitudinal space-charge fields become maximal. Note that, the effects of the
longitudinal space charge are beyond the scope of the present work, as the space
charge form factor in HGHG-Structures tends to zero:

x =
rzγ√
rxry

,

e.g. x =
1ps · 3 10+8 m

s
· 2348.34

100µm
≈ 7045 ⇒ f(x) = 0.

2.4 Space Charge Implementation

The calculation of beam optics in accelerator physics is executed in a particular
way. The development in time is transformed into a development along the tra-
jectory. Thus, the impacts of space charge effects have to be transformed as well.
The eq.s 2.34 and 2.35 determine the space-charge field distributions of the equiv-
alent beam model in the centre of mass system. The transformation of the result-
ing space charge force into an expression, which is more common in accelerator
physics, yields:

F = mr̈ = m
d2

dt2
r,

= m0γβ2c2 r′′. (2.48)

A separated treatment for each plane is possible, where the space charge force
points in the direction of the projected displacement x:

x′′ =
Fx

m0γ β2c2
,

x′′ = ksc x. (2.49)

This formula is identical with the equation of motion in the defocusing plane of
quadrupoles, see app. A. The coefficient ksc describes the defocusing strength of
the space charge effect. Due to the space charge effects the equations of motions
in the accelerator elements change. The additional defocusing effects have to be
included. This leads to modified transfermatrices as described below. Note, that
longitudinal space charge effects are neglected.
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Drift

In drift sections, where any external forces are neglected, the equations of motion
are given by eq. 2.49. Thus, the space charge defocusing in drifts can be expressed
by a modified duplex defocusing matrix, whereas the defocusing strength in each
plane is given by the space-charge defocusing strengths. The transfermatrix of
drifts transforms to:



cosh(
√
|kscx |s) 1√

|kscx |
sinh(

√
|kscx |s) 0 0 0 0√

|kscx |sinh(
√
|kscx |s) cosh(

√
|kscx |s) 0 0 0 0

0 0 cosh(
√
|kscy |s) 1√

|kscy |
sinh(

√
|kscy |s) 0 0

0 0
√
|kscy |sinh(

√
|kscy |s) cosh(

√
|kscy |s) 0 0

0 0 0 0 1 s
γ2

0 0 0 0 0 1


.

Quadrupole

Quadrupoles are characterised by their focusing features. Due to the space charge
effects the equations of motion for quadrupoles change to:

x′′ + (kqpx − kscx)x = 0,

y′′ − (kqpy + kscy)y = 0.

In the defocusing plane of quadrupoles the defocusing strength increases to the
sum of both defocusing strengths. The quadrupole focusing strength decreases due
to the impact of the space-charge defocusing strength. In this case three different
regimes have to be distinguished. If the space charge defocusing is weaker than
the focusing of the quadrupole, the resulting effect remains focusing. If the space
charge defocusing is stronger than the focusing of the quadrupole, the resulting
effect will be defocusing. In the case of an equilibrium between space charge defo-
cusing and quadrupole focusing the quadrupole will act like a drift in the focusing
plane. The transfermatrices for the different regimes can be easily calculated. In
app. A the development of the transfermatrix elements for quadrupoles without
the impact of space charge is given. This development yields the correct transfer-
matrices with space charge impacts by replacing the quadrupole strength k with
an effective quadrupole strength keff =

∑
ki and ∆ki.

Bend

From the eq.s 2.34 and 2.35 it follows, that the effect of transverse space charge
in a linear approach is separable in the two transversal planes. Furthermore, the
impact of the longitudinal space charge is also independent of the field distribu-
tions in the transverse plane. In consequence a simple implementation in existing
programs seems to be possible. The focusing strength of all elements couples to
the space charge defocusing. Unfortunately, this approach does not work in all
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elements. The treatment of bends is more complicated. The equation of motion
for particles in a bend (bending in x-z plane) is defined by:

x′′(s) + (
1

R2(s)
− kscx(s))x(s) =

1

R(s)

∆p

p
, (2.50)

y′′(s)− kscy(s)y(s) = 0. (2.51)

In the non-bending plane the bend acts like the defocusing plane of quadrupoles.
In the bending plane, there is a coupling between the transverse and the longitu-
dinal motion. If the energy deviation is not zero, i.e. ∆p

p
6= 0, the dispersive effect

takes place. The effect of the dispersion creates its own dynamics, which will be
discussed in the next section. Furthermore, the physical characteristics of bend-
ing magnets leads to another effect, whereby even in the absence of dispersion a
development of the equation of motion similar to quadrupoles is hard to manage.
This will be discussed in the last part of this chapter.

2.4.1 Space Charge Effect and Dispersion Part I

Although fields of space charge separate and act in different planes, a coupling
of those space charge fields could take place. In dispersive elements, like bends, a
coupling between the longitudinal and transverse motion occurs. Therefore, the
transverse space charge acts on the longitudinal dimensions of the bunch.

combined function approach

The following development is performed in analogy to the development of the
regular dispersion elements, shown in app. A.
The equation of motion including space charge effects becomes:

x′′(s) + (
1

R2(s)
− ksc)x(s) =

1

R(s)

∆p

p
. (2.52)

The impact of space charge is restricted to the focusing effect of the bend, if the
energy spread vanishes, i.e. ∆p

p
= 0. This is realised for an ensemble of particles,

where all particles have the same energy. In general this condition is not fulfilled.
As a consequence the dispersive effect of the bend happens. In the following
derivation a constant energy spread and a constant curvature radius are assumed.
The combination of weak focusing and space charge contribution is replaced by
the abbreviation:

k =
1

R2
− ksc. (2.53)

This definition of k is similar to the definition of the focusing strength of combined-
function bending magnets [23] . The equation of dispersion becomes:

D′′(s) + k D(s) =
1

R
. (2.54)
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Hence it follows: for a bend-dominated focusing (k > 0),

R16 =
1

|k|R
(1− cos(

√
|k|s)) (2.55)

R26 =
1√
|k|R

sin(
√
|k|s). (2.56)

In the case of a space-charge dominated focusing (k < 0), the elements change to

R16 = − 1

|k|R
(1− cosh(

√
|k|s)) (2.57)

R26 =
1√
|k|R

sinh(
√
|k|s). (2.58)

This development is only correct, if the energy spread ∆p
p

remains constant. The
impact of longitudinal space charge is a change of the energy spread. Thus, in
the case of including longitudinal space charge effects, the transfermatrix ele-
ments R15, R25, R61 and R62 of bends might not remain zero. The effect of the
longitudinal space charge will also couple with the transversal motion.

space charge kick approach

In some simulation codes, e.g. Trace3D, the impact of space charge is implemented
by ’space charge kicks’. The space charge defocusing is simulated by an element,
which has no longitudinal extension. The effect of this elements is similar to the
effect of the element edge. It changes the divergence of beams.
At several positions the beam divergence is modified by those kicks.

M6 dim.
kick =

 a11 . . . a16
...

...
a61 . . . a66


In the case of separated kicks in the transversal and longitudinal planes, this
matrix decays to three sub-matrices. A calculation of a Sbend matrix with a de-
focusing space-charge kick demonstrates also a change of the dispersion elements:

R∗
16 = R16a11 + R26a12,

R∗
26 = R16a21 + R26a22.

Assuming the thin lens formula for the sub-matrices, the dispersion elements
transform to:

R∗
16 = R16, (2.59)

R∗
26 = R16

1

f
+ R26. (2.60)
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Here, f characterises the focus of the space charge impact.
The new dispersion elements are marked by ∗. In contrast to eq. 2.57 the disper-
sion element R16 does not change. But, the element R26 becomes modified by the
space charge. After a small drift this element causes a change of the element R16.
In the limit of an infinitesimal step size this approach will in theory be suitable.
Similar to the coupling of longitudinal and transversal motion a coupling of the
two transversal planes might lead to a similar discussion as well. Such a coupling
occurs in elements like solenoids and skew quadrupoles.

2.4.2 Space Charge Effect and Dispersion Part II

The second specific characteristic of bends is illustrated in figure 2.13.

Figure 2.13: Bunch in a Bend

If a bunch enters a bend, the bunch rotates in the reference system, while it does not
rotate in the laboratory system.

The σ-matrix expresses the bunch extensions in the reference system by the
square root of the diagonal elements, σ11, . . . σ66 [24]. If the coupling elements
σ13, σ15 and σ35 are zero, the bunch is upright in the reference system. Thus,
the bunch dimensions in the centre of mass system correspond to the bunch
extensions in the reference system. If a bunch passes through a bend, the bunch
rotates in the reference system. The resulting dimensions of the bunch and the
rotation angle can be expressed by the σ-matrix. In this case at least one of the
coupling elements is not zero. The σ-matrix has to be transformed into a matrix
with vanishing coupling elements, as the equations of space charge fields relate
to an ellipsoid in the centre of mass system. The elements σ11, σ33 and σ55 of this
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transformed σ-matrix contain the correct dimensions for the space charge formula.
Nevertheless, those space charge fields are expressed in the cms-system of the
bunch. In return the defocusing strengths must be transformed into the reference
system. In the case of bends this transformation leads to a combined defocusing
strength, which contains transversal and longitudinal defocusing contributions.
The following calculation scheme cuts it into short.
The simplified σ-matrix contains only the bunch dimensions. σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ55

 ⇒

 a 0 0
0 b 0
0 0 c


From this matrix the bunch dimensions are taken to calculate the space charge
fields and the defocusing strengths ki. They are expressed in the diagonal matrix,
which has to be transformed back by the transformation algorithm used above
in reverse direction. kx 0 0

0 ky 0
0 0 kz

 ⇒

 κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33


This matrix describes the developed space-charge defocusing in the reference
system. From this point it seems to be easy to cope with space charge effects
in bends. The impact of the transversal space-charge effects is an additional
defocusing. But the impact of the longitudinal space charge effects is a change of
the energy spread. In a linear approach the change of the energy spread will be
also a function of the particle position. The change of the energy spread cause a
change of the coupling between the transverse and the longitudinal motion. Thus,
additional correlation elements between transversal and longitudinal coordinates
will be created. Sbend (bending in x-z plane) matrix without longitudinal space
charge effects is defined by:

Rwithout l.SC =


R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0
0 0 R43 R44 0 0
R51 R52 0 0 1 R56

0 0 0 0 0 1

 .

Sbend matrix with longitudinal space charge effects becomes:

Rwith l.SC =


R11 R12 0 0 R15 R16

R21 R22 0 0 R25 R26

0 0 R33 R34 0 0
0 0 R43 R44 0 0
R51 R52 0 0 R55 R56

R61 R62 0 0 R65 R66

 .

The bunch dimensions in the bending plane as well as the transversal divergence
and the energy spread are completely coupled.
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The Program

Generally, simulation programs are limited by their initial assumptions and
approximations, which are necessary for the calculations. An efficient employment
of a program is achieved, if the task is adapted to the skills of the program. The
aim of creating P12 was the need of a fast calculating tool for beam optics. P12
is suitable for lattice design without space charge effects, for the investigation of
space charge impacts on beam optics and in a combined employment with other
space-charge calculating programs, P12 can also be used as a diagnostic tool.
Due to the development of the bunch properties during the passage through the
accelerator the space charge effects changes. For the calculation of the impact
of space charge effects on optics, it is crucial to update the space charge force
during the passage through a lattice. This demands the fragmentation of all used
elements, which is discussed in the first part of this chapter. The second part
deals with input parameters, special features and further assumptions included
in the code of P12.

3.1 Fragmentation of Elements

A requirement of space charge calculations is the knowledge of the instantaneous
bunch properties. This requires an updating of the transfermatrices and the frag-
mentation of the beam optics elements. Most of the elements involved in P12 are
easy to split up.
Drift
In the drift matrix the elements depend linearly on the drift length. The result of
the multiplication of two drift transfermatrices corresponds to the transfermatrix
of a drift, whose driftlength is equal to the sum of both driftlengths.(

1 L1

0 1

)(
1 L2

0 1

)
=

(
1 L1 + L2

0 1

)

Sbend and Quadrupole
In the case of quadrupoles and Sbends the multiplication leads to a more complex
finding. This is based on the focusing character of such elements. Nevertheless,
these expressions can be transformed into a matrix construction, which is identical
to the transfermatrix for an element with a length given as the sum of the lengths
of both individual elements. This is also valid in the case of the dispersive elements
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of bending magnets.(
cos(ϕ1) 1√

k
sin(ϕ1)

−
√

ksin(ϕ1) cos(ϕ1)

)(
cos(ϕ2) 1√

k
sin(ϕ2)

−
√

ksin(ϕ2) cos(ϕ2)

)
=

(
cos(ϕ1 + ϕ2) 1√

k
sin(ϕ1 + ϕ2)

−
√

ksin(ϕ1 + ϕ2) cos(ϕ1 + ϕ2)

)

A combination of two subsequent quadrupoles can be expressed as one quadrupole,
whose length is the sum of both individual lengths. Hence it follows, a quadrupole
can also be subdivided into several quadrupoles under the conservation of the to-
tal quadrupole length. This fragmentation is also valid for Sbends.
Rbend
For the space charge calculations in P12 the fragmentation of Rbends is consid-
ered as well. The treatment of Rbends requires the addition of a focusing kick, so
called edge. The corresponding focusing elements have no longitudinal expansion,
see app A. A fragmentation of Rbends is realized by a separated treatment of the
constituent parts of Rbends. For edges, there is no need to split them off. The
middle part of a Rbend is described by an Sbend. The fragmentation of Sbends is
already discussed above. Thus, the fragmentation of Rbends is realized as shown
in figure 3.1.

Figure 3.1: Fragmentation of Rbends
The fragmentation of a Rbend is realized by the fragmentation of the Sbend part.

A fragmentation of Rbends by ’mini’-Rbends leads to an additional focusing ef-
fect. This effect is based on the generation of an additional field gradients.

3.2 P12 - Basics, Features and Approximations

P12 is appropriate for the calculation of lattices in high energy electron accelera-
tors. Some elements of the transfermatrix, like R56, require the momentum or
the energy of the particles. The relationship of momentum, kinetic energy (Ekin),
total energy (E) and rest energy (m0c

2) is known from the relativistic dynamics.
In P12 the average particle energy (E) is used:

E =
√

E2
kin + m2

0c
4.
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In accelerator physics different descriptions of particle coordinates in the six-
dimensional phase space are in common. In P12 the canonical coordinates are
: 

x
x′

y
y′

z
z′

 =



x
px

p

y
py

p

δl
∆p
p


.

The coordinate systems used in codes often differ in the description of the lon-
gitudinal plane. For example, MAD uses a time difference ∆t instead of the
longitudinal displacement δl. The definition of the coordinates determines the
configuration of the σ-matrix. This matrix describes the bunch properties, which
are necessary for space charge calculation. The σ-matrix elements in P12 cor-
respond to the RMS-values of the distributions, e.g. for an upright bunch the
element σ11 defines the second momentum of the bunch extension in x-direction,√

σ11 = σx. The values of the σ-matrix arrays are given in the SI-system, e.g.
σ11[m

2].

Figure 3.2: P12 - Layout
This screen shot shows the main interface of the program P12, at which the previous
lattice (above) as well as the additional lattice-part (below) are presented. The different
kinds of magnetic elements are distinguished by colours.

In general, the designing of lattices is time-consuming. Therefore, special subrou-
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tines in the code P12 are provided, which help to assist the progress of designing.
Often precasted lattices are used, which are only adapted to the new require-
ments. In P12 new lattices can be created by old lattices, precasted lattices, e.g.
FODO-cells, and single beam optic elements or as combinations of those three.
Old lattices are available by the subroutine lattice. It is possible to test the impact
of new lattice sections before adding them to the design lattice. The impact of
the created lattice and the effect of new sections can be investigated by the plot
subroutine.
Due to the different input decks the comparison of lattices from different pro-

(1) Plot Subroutine (2) Translation Sub-
routine

Figure 3.3: P12 - Plot Subroutine and Translation Subroutine
The plot subroutine offers the possibility to investigate the properties of the lattice and
the beam development without the use of external programs. The translation subroutine
is evolved from the need of the benchmarking of P12. With this subroutine different
input decks can be converted into each other.

grams can become complicated. Therefore, the program P12 consists of a transla-
tion subroutine for bending magnets and for quadrupoles, fig. 3.3. Further trans-
lation algorithms are proposed. The implementation of new elements in P12 is
provided by the subroutine start-matrix. The start-matrix is a transfermatrix,
which is used at the beginning of every lattice section. If the start-matrix is de-
fined to the transfermatrix of a new element, the impact of the new element is
taken into account at the beginning of every section.
In the following the parameter of the different beam optic elements are presented.
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Beam optics without Space Charge Effects

Drift

The element drift is characterised by only one parameter, the driftlength. This
parameter defines the endpositoin of a drift as well as the possible endposition of
a lattice.

Parameter Unit Description
lsdr m endposition

Table 3.1: Parameter of the Drifts in P12

Quadrupole

Quadrupoles are used to focus and defocus. In contrast to drifts the implemen-
tation and characterisation of quadrupoles require more input parameters. The
first parameter defines the focusing plane. QF marks a quadrupole, which focuses
in x-plane and QD a quadrupole, which defocuses in x-plane. A second param-
eter defines the starting position of the quadrupole, called QposF and QposD.
The combination of focusing strength, QkonstF or QkonstD, and quadrupole
length, lqF or lqD, determines the focal length of a quadrupole. An advantage
of using the focusing strength is, that this input parameter is independent of the
particle momentum. With the knowledge of the particle momentum, the focus-
ing strength can be expressed by a field gradient [9]. Based on the dependency
of focusing strength, focal length and quadrupole length the use of the focusing
strength is chosen for P12.

Parameter Unit Description
QF/QD - marks the focusing plane, QF → focuses in

x-direction
QposF/QposD m starting position

QkonstF/QkonstD m−2 focusing strength
lqF/lqD m length

Table 3.2: Parameters of the Quadrupoles in P12

Bends

The effect of a bends can be determined by 6 parameters. The first parameter
distinguishes between Sbend(SB) and Rbend(RB). Further parameters define
the position, the length and the field strength of the bending magnet. The field
configuration determines the bending direction, up, down, left hand or right hand.
In the lattice-file the bending directions are marked by t for true or f for false.
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Example: SB 0 2 1 f f
It stands for a Sbend, which starts at 0m. The field strength is 2 Tesla. The ’1’
marks the length of the bend of 1m. A definition of the bend length is presented in
the following. The first f defines the bending direction. The second f determines,
whether the bending plane is identical to the x-z-plane or the y-z plane. This

Parameter Unit Description
Bpos m starting position
Bfeld T field strength
blan m length

Table 3.3: Parameters of the Bends in P12

Figure 3.4: Length of Bends
Two different definitions of magnet length are in common. The scheme on the left
hand side shows the definition used in P12. It bases on a projection of the design path,
whereas the other definition, on the right hand side, determines the magnet length by
the distance between the exit points of the design path. The relation between both lengths
is given by the cosine of the bending angle.

input deck for bending magnets differs from the input decks of other programs,
whose input decks contain bending radius, bending angle and path length inside
the bend. Those parameters allow a calculation of the effects of bends, which is
independent of any physical realisation. The motivation for the particular input
deck in P12 is based on the fact, that for designing lattices the physical realisation
has also been taken into account.

Undulators

Undulators are one of the main components of every FEL. They are charac-
terised by many parameters, like pole dimensions, gapsize and in the case of
elliptical APPLE undulators by the shift-parameter. With the large number of
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parameters the field configuration becomes not only tunable but also complex.
In chapter 2 the approximations for undulators used in P12 are discussed. In
these approaches most of the real undulator parameters are not necessary. The
undulators are characterised by their period length λu, the number of periods
Uzahl and their average field strength Ufeld. In the case of elliptical undulators
the field strength is determined by two parameters, which are the average field
strength in x-direction feld1 and the average field strength in y-direction feld2.
In order to merge an undulator correctly into a lattice, the undulator position
Upos is required as well. The different kinds of undulator approximations and
undulator features are selectable by three parameters, AMundu, UnduGen and
Endpol. These parameters are boolean, i.e. their values are 0 and 1 rather false
and true. Only in the Rbend-approach and the approach for elliptical undulators

Figure 3.5: Selection Scheme for Undulators
This scheme illustrates the construction of the undulator-selection procedure in P12.

endpoles are available. In section 2.2 different kinds of realization of endpoles
are introduced. In the code P12 the endpole configuration is characterised by a
constant magnetic-pole length with a variable field strength. The endpoles are
computed with full undulator periods, whereby the length of the undulators re-
mains constant, regardless of whether the endpoles are set or not.

Parameter Unit Description
UE/UP − marks the different kinds of undulator types,

UE = elliptical undulator UP = planar undu-
lator

Upos m starting position
Ufeld − RMS K-value/field strength of planar undu-

lators
feld1/feld2 T (average) field strengths of elliptical undula-

tors in x- and y-direction
λu m period length

Uzahl − number of periods

Table 3.4: Parameters of the Undulators in P12
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Approximations in the Space Charge

Calculation

The space charge fields are determined by eq. 2.34 and eq. 2.35. These equations
contain the parameters a, b and I, which describe the dimensions of the bunch
and the peak current. The bunch profile is given by the σ-matrix. In P12 the data
of the σ-matrix corresponds to the RMS-values of distributions. That means, the
parameters a and b are given by

√
5 ·σx and

√
5 ·σy, as the equivalent beam model

is used. These parameters describe the transversal dimensions of the bunch. The
longitudinal dimension of the bunch is used to transform the parameter I, which
corresponds to the peak current:

I =
3Qβc

4
√

5σz

.

Q relates to the bunch charge and βc corresponds to the average bunch velocity.
The development of this formula is presented in appendix B. In case of a rotated
bunch the projections on the axes of the reference system are used.

Figure 3.6: Bunch Dimensions of a Rotated Bunch
Since the code P12 does not consist of any subroutines for the calculation of longitudinal
space charge effects, the assumption of a deformation is accepted.

If the bunch is rotated according to the reference system, the resulting space
charge effects of different planes will couple. Since the code P12 does not con-
tain any subroutines for the calculation of longitudinal space charge effects, the
assumption of a deformation is accepted. This leads to a slightly different calcu-
lation of space charge effects. In the sections 2.4.1 and 2.4.2 that topic has been
discussed in detail.

36



4

Benchmarking

In this chapter the validity of the results of the code P12 is shown by the
comparison with different established programs. Since the space-charge calcula-
tion in the code P12 is based on the development of bunches without the impact
of space charge, the correct computations of the bunch development excluding
space charge is required. The code MAD, Methodical Accelerator Design, is an
established program for the computation of magnetic lattices including also sec-
ond order effects. The comparison of the results of P12 with the results of MAD
will demonstrate the reliability of the P12-simulation routine, while space charge
effects are excluded.
The main task of the code Genesis1.3 is the simulation of the FEL-process. P12
was planned for fast design and calculation of beam optics for Genesis1.3. So the
results of P12 have to correspond to those of Genesis1.3 as well. Genesis1.3 is
equipped with a special element, undulator, which is treated in a particular way,
as mentioned in section 2.2. In P12 different types of undulators are computable,
including also the undulator model of Genesis. The validity of the undulator fo-
cusing in P12 was checked by the comparison with the code WAVE [25].
The space charge calculation is tested with Trace3D and ASTRA. Trace3D is a
fast, analytically calculating program. It copes with the elements of beam op-
tics as well as with space charge effects in a linear manner. The output data
of Trace3D consists among others also of a transfermatrix. In this chapter, the
transfermatrices calculated by P12 and by Trace3D are compared and discussed.
For the investigation of higher order space charge impacts the code ASTRA, A
Space Charge Tracking Algorithm, can be used. ASTRA is a particle tracking
program, whose main task is the calculation of space charge effects and their
impact on charge distributions in return. A comparison of tracking programs
with analytically calculating programs is hard to manage. In general, analyti-
cal programs, like Trace3D and P12, use approximations and approaches, which
simplify the elements compared to numerical calculations. This can cause dis-
crepancies. An example for these approximations is the ’hard edge’ approach for
magnetic elements. Instead of using elements with fringing fields, the elements
are approached by effective field lengths and effective field strengths. In this ’hard
edge’ approximation the deviation of the field distributions tends to infinity at
the border of the elements. Such approximations can create singularities, which
leads to numerical errors. Thus, the comparison between numerical simulations
and analytical calculations has to be performed very carefully.
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4.1 MAD

In absence of space charge fields the correct computing of the transfermatrices
is checked with MAD. The results of P12 are presented with additional decimal
places to show the trends rather than suggesting a higher accuracy. All magnetic
elements involved in P12, except the undulators, are benchmarked with MAD. It
uses a special coordinate system, which differs from the coordinate system of P12
in longitudinal direction. The values of the dispersion elements in P12 have to
be divided by β to yield the values of the dispersion elements in MAD. Another
source of variations are the differences in the input decks of both codes. MAD
uses parameter, which are independent of the particle properties and the mechan-
ical layouts. P12 is designed for creating lattices with ’external’ parameters. In
the case of quadrupoles, the input parameters are the same. Both use focusing
strength and length of quadrupoles. However, the input deck for the calculation
of bending magnets differs. MAD uses the bending angle and the path length in-
side the magnet. These parameters determinate the curvature radius. The input
deck of P12 consists of the magnetic field strength and the length of the bending
magnet.

Bends

SBEND

The average particle energy is 2300MeV . Other input parameters are a magnetic
field strength of 803,41mT and a length of the bending magnet of 8,270m. This
yields to a curvature radius of 9,55m and a bending angle of π

3
.

MAD



0.500000 8.269933 0 0 0 4.774648
−0.090690 0.500000 0 0 0 0.866025
0 0 1 10 0 0
0 0 0 1 0 0
−0.866025 −4.774648 0 0 1 −1.730066
0 0 0 0 0 1


P12



0.500000 8.26993343 0 0 0 4.77464828
−0.09068997 0.500000 0 0 0 0.8660254
0 0 1 9.999999994 0 0
0 0 0 1 0 0
−0.8660254 −4.77464828 0 0 1 −1.73006706
0 0 0 0 0 1
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RBEND

In contrast to the Sbend, the particle beam does not enter or leave the Rbend
perpendicular. In this example the Rbend is characterised by two symmetrical
angles of entrance and exit, which correspond to the half of the bending angle.
The average particle energy is defined to 2300MeV . The other input parameters
are a magnetic field strength of 2008,54mT and a length of the bending magnet
of 2,7m. This yields to a curvature radius of 3,82m and a bending angle of π

4
.

MAD



1 2.700949 0 0 0 1.118770
0 1 0 0 0 0.828427
0 0 0.674677 3 0 0
0 0 −0.181603 0.674677 0 0
−0.828427 −1.118770 0 0 1 −0.299051
0 0 0 0 0 1


P12



1 2.70094895 0 0 0 1.11876969
0 1 0 0 0 0.82842712
0 0 0.67467743 3 0 0
0 0 −0.18160346 0.67467743 0 0
−0.82842712 −1.11876969 0 0 1 −0.2990512
0 0 0 0 0 1


The impact of fringing fields is implemented as discussed in [10]. In a linear
manner the impact of edge focusing also depends on external parameter, i.e.
gapsize. In contrast to this example the values of edge focusing and defocusing
(different planes) can differ from each other. It is based on the effects of the
gapsize between the magnetic poles, which modifies the resulting fringing fields.
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Quadrupoles

A quadrupole with a focusing strength of 0.5797 1
m2 and a length of 250mm is

chosen to benchmark the results of MAD and P12. It focuses in x-plane. The
average particle energy is 200MeV .

MAD



0.981939 0.248493 0 0 0 0
−0.144051 0.981939 0 0 0 0
0 0 1.018170 0.251512 0 0
0 0 0.145802 1.018170 0 0
0 0 0 0 1 2E − 6
0 0 0 0 0 1


P12



0.98193900 0.248493097 0 0 0 0
−0.14405145 0.98193900 0 0 0 0
0 0 1.01817039 0.25151223 0 0
0 0 0.145801722 1.01817039 0 0
0 0 0 0 1 1.632E − 6
0 0 0 0 0 1


The difference in the element R56 results from different definitions of the coordi-
nate system. Furthermore, in this example the value of the element R56 is rounded
up. In the case of a bending magnets the conversion is more complex, because the
element R56 contains more components than the relativistic deviation, see app.
A.
MAD also calculates the development of input data, like TWISS-parameters.
Figure 4.1 shows the development of the beta-function along a chicane. This chi-
cane consists of 4 bending magnets with different entrance angles, figure 4.2. All
magnets have the same characteristics, i.e. the same magnetic field strength and
the same magnetic length. A beam enters the first magnet perpendicular and
leaves it by the angle of bending. The second magnet is entered by the angle of
exit of the first magnet and leaves perpendicular. This chicane is symmetrical
and so the third bend is entered perpendicular again and so on. The results of
P12 correspond to the results of MAD. Furthermore, figure 4.1 also shows that
in general the development of the bunch dimensions cannot be calculated by a
linear approximation between two separated points. Thus, the computation of
space charge effects requires a calculation of intermediate points.
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Figure 4.1: Beta-Function Development
This plot shows the development of the β-function in x-plane and y-plane along a chi-
cane used for bunch compression. The function of P12 corresponds to the points of
MAD.

Figure 4.2: Chicane Design Scheme
Such magnetic arrangements are used to compress bunches. The principle of this scheme
bases on a combination of the dispersive effect and the energy chirp along the bunch.

4.2 Genesis1.3

In contrast to MAD, Genesis1.3 is a particle tracking program. The main task of
Genesis1.3 is the simulation of the FEL-process. Due to the fact that the bunch
dimensions have a strong impact on the FEL-process, the development of the
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bunch dimensions are also a part of the Genesis calculation routine.
Figure 4.3 shows the development of the beam cross section along a good matched
FODO-lattice. This lattice is composed of four regular FODO-cells, i.e. it consists
of nine alternating quadrupoles with an equal distance between two quadrupoles.
Each distance between two quadrupoles amounts to 3.45m.The quadrupole length
is 0.5m. A focal length of 3.45m leads to a focusing strength of 0.58 1

m2 . The
particle energy is set to the maximum value of the planned BESSY FEL, 2.3GeV.
Other beam parameters are the RMS-cross section 50µm and the transversal
normalised emittance of 1.5mm mrad. The results of Genesis1.3 and P12 are

Figure 4.3: FODO-Lattice with Good Matching
This plot shows a good matched FODO-lattice. The amplitude of the betatron oscillation
has to be controlled for a good matching.

identical. There is a perfect matching between the FODO-lattice and the initial
beam parameters. In contrast to figure 4.3, figure 4.4 shows a dismatching between
the FODO-lattice and the initial beam parameters.
If there is a dismatch, the dimensions of the beam cross section will increase,

as shown in figure 4.4. The calculations of this lattice by P12 are also affirmed
by Genesis. For the simulation of the FEL-process, Genesis1.3 has to include
undulators. Different treatments of undulators are already presented in chapter
2.2. In figure 4.5, the different approaches of planar undulators are compared
with each other. The output data from Genesis1.3, from P12 with the Genesis1.3
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Figure 4.4: Dismatched FODO-Lattice
This plot shows a dismatch between lattice and initial beam parameter. The RMS beam
size increases along several FODO cells.

undulator approach and from P12 with the Rbend approach are shown. The
undulator consists of 69 period with a period length λu of 50 mm. The undulator
RMS K-value is 3.
The results show a very good agreement. As discussed in chapter 2, planar

undulators act like combinations of focusing planes of quadrupoles and drifts. In
planar undulator the focusing plane is not the plane of bending.
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Figure 4.5: Comparison of different Undulator Approaches
In this plot the correspondence of the transverse focusing characteristics of the different
undulator approaches is shown.

4.3 Trace3D

The space charge force changes the development of the bunch. In a linear ap-
proximation the space charge force can be seen as an additional defocusing force.
There are different approaches for the implementation of space charge effects.
Trace3D calculates in a linear manner and uses ’space charge kicks’ [22]. Each
element in the lattice splits up. Between the pieces of elements, the defocusing
effect is added by a change of divergence, i.e. kick. Due to this approximation the
treatment of all elements remains identical to calculation without space charge
effect. The third version of ’trace’ (Trace3D) consists of a 3D space-charge cal-
culating subroutine. An application area for Trace3D is the calculation of beam
dynamics in Energy Recovery Linacs (ERL), including low energy sections and
chicanes. Chicanes are often used to compress bunches in longitudinal direction.
If a bunch has to be compressed to its limit, the repulsing force of space charge
effects appears as a limiting factor. In the last part of this section the results of
space charge testes in a chicane are presented.
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DRIFT

For a first comparison a lattice with a drift of 1m is chosen, because the impact
of the space charge effects cannot be manipulated by any external fields. The
regular transfermatrices of both programs agree totally. Beam parameters are a
circular cross section with a radius (RMS) of 0.8mm, a RMS bunch length of
about 3mm, a bunch charge of 77pC and an average particle energy of 6.5MeV .

DRIFT - Without Space Charge Effects

1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0.0061804
0 0 0 0 0 1


DRIFT - With Space Charge Effects

P12

1.02306 1.007615 0 0 0 0
0.04584 1.02261 0 0 0 0
0 0 1.02306 1.007615 0 0
0 0 0.04584 1.02261 0 0
0 0 0 0 1 0.0061804
0 0 0 0 0 1


TRACE3D

1.02305 1.007611 0 0 0 0
0.04582 1.02259 0 0 0 0
0 0 1.02305 1.007611 0 0
0 0 0.04582 1.02259 0 0
0 0 0 0 1.00073 0.0061805
0 0 0 0 0.0236 1.00073


Note that, in P12 the longitudinal space charge effects are not taken into account,
accordingly the elements R55, R56, R65 and R66 do not have to agree. The com-
parison of the results of P12 and Trace3D shows that the transverse defocusing
of P12 is slightly stronger pronounced than the defocusing of Trace3D. This is
explained immediately, if the longitudinal part of the transfermatrices is consid-
ered. The chosen parameters leads to a non-vanishing longitudinal space charge
effect. Due to the additional defocusing in the longitudinal direction the bunch
length increases faster in Trace3D than in P12. Therefore, the average current de-
creases more and so does the magnitude of the transversal space charge effects. In
this test the relative change between including and excluding longitudinal space
charge effects is about 1

2000
. The dimension of the transverse cross section at the

end of this lattice is 0.8244mm, whereby the difference amounts to 400nm.
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QUADRUPOLES

At the beginning of the comparison of space charge computation in quadrupoles a
single quadrupole is chosen. For the space charge calculations the following beam
parameters are used. The average particle energy is 23MeV , the dimensions of
the bunch cross section are 0, 661×0, 36mm2 and the bunch length is 3mm. The
quadrupole is characterised by a length of 0.5m and a field gradient of 0.044744 T

m
.

Results of calculations without the impact of space charge are almost identical.

Quadrupole - Without Space Charge Effects
P12



0.9279622 0.4879350 0 0 0 0
−.2846406 0.9279622 0 0 0 0
0 0 1.073810 0.5122422 0 0
0 0 0.2988204 1.073810 0 0
0 0 0 0 1 0.2468052E − 3
0 0 0 0 0 1


TRACE3D



0.9279622 0.4879350 0 0 0 0
−.2846406 0.9279622 0 0 0 0
0 0 1.073810 0.5122422 0 0
0 0 0.2988204 1.073810 0 0
0 0 0 0 1 0.2468062E − 3
0 0 0 0 0 1


A bunch charge of 1nC leads to a change in the dimensions of the cross section
of round 0.5 %. This additional expansion occurs while the beam moves 0.5m.
The transfermatrix including space charge are:

Quadrupole - With Space Charge Effects
P12



0.93112895 0.48847396 0 0 0 0
−0.2721009 0.93121987 0 0 0 0
0 0 1.07976055 0.5132148 0 0
0 0 0.32293301 1.0796227 0 0
0 0 0 0 1 0.24680518E − 3
0 0 0 0 0 1

 ,
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TRACE3D

0.9311307 0.4884743 0 0 0 0
−.2720939 0.9312217 0 0 0 0
0 0 1.079764 0.5132154 0 0
0 0 0.3229465 1.079626 0 0
0 0 0 0 1.000001 0.2468063E − 3
0 0 0 0 0.5102915E − 02 1.000001

 .

Due to the short path length, the longitudinal dimension remains almost con-
stant. Hence it follows, the influence of the transversal space charge values by the
longitudinal space charge effects is small. The relative discrepancies in the size of
the bunch cross section of the results of P12 and Trace3D are less than 1

100
%.

FODO-Lattice

In order to investigate the impact of space charge effects along combinations of
quadrupoles and drifts, a FODO-lattice is chosen. This kind of lattice is already
presented in chapter 4.2. The particle energy is set to 23MeV . Due to the lower
particle energy the dominance of space charge increases. The focusing strength
of the quadrupoles remains almost constant, but due to the change of energy the
quadrupole field gradients have to be adjusted.

QG(2300MeV ) = 4.47443
T

m
⇒ QG(23MeV ) = 0.0447443

T

m

As a result of the combination of the low average particle energy and the long
lattice, a change of the bunch length by the longitudinal space charge effects be-
comes observable, whereby the change of the longitudinal dimensions corresponds
to 0.25 % of the bunch length.

FODO-lattice - including Space Charge Effects
P12

−1.068249 11.37143 0 0 0 0
−0.08178167 −0.065552 0 0 0 0
0 0 −1.1542979 2.8276633 0 0
0 0 −0.2954681 −0.1425245 0 0
0 0 0 0 1 0.015598088
0 0 0 0 0 1


TRACE3D

−1.068410 11.36073 0 0 0 0
−0.08179253 −0.06624522 0 0 0 0
0 0 −1.154480 2.823486 0 0
0 0 −.2955562 −.1433557 0 0
0 0 0 0 1.002317 0.01561005
0 0 0 0 0.2992545 1.002349
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The dimensions of the cross section are defined by the values of the semi axes
(RMS-values)

σx(0m) ≈ 0.67 mm and σy(0m) ≈ 0.36 mm initial,

σx(10m) ≈ 0.91 mm and σy(10m) ≈ 0.49 mm final.

The differences between the initial values and the final values are small. It seems
that the space charge effects have only a weak effect on the beam and change
its properties only a little. But the development of the beam size shows another
effect. Unfortunately, there was no output of Trace3D, which suffice for a plot
with both programs. The figure 4.6 bases on data from P12.

Figure 4.6: RMS-Beam Size Development and Space Charge Effects
This plot shows the different developments of the beam cross section with and without
the impact of transverse space charge effects. The impact of space charge leads to a
dismatch between the characteristics of the lattice and the dynamics of the bunch.

This plot presents the development of the transverse RMS beam size including
and excluding transverse space charge effects. In this plot an important feature
of beam focusing is shown. The focusing effect becomes stronger, if the dimen-
sions of the beam cross section increase. Due to the space charge defocusing
a dismatch between the characteristics of the lattices and the dynamics of the
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bunch is created. This leads to a beat of the beta-function and so to a beat of
the bunch dimensions. As a consequence, the beam focuses at several spots, at
which the beam cross section becomes smaller than in the case of a good match-
ing. In figure 4.6 one spot is located at about 28m. But in return, after passing
this spot the bunch cross section increases rapidly. Thus, the transfermatrices
with space charge defocusing could even show a smaller bunch cross section than
transfermatrices without space charge defocusing do.

Bends and Chicanes

Space charge effects in bends are complex. In the limit of a infinitesimal step
size the approach of space charge ’kicks’ would in theory supply correct results.
Due to the physical properties of bends the dynamics of separate planes become
complex. As a consequence of the characteristics of bending magnets, the longi-
tudinal space charge effects will have an influence on the transversal dynamics
of the beam and vice versa. Since the program P12 is created for the estimation
of transversal space charge effects in high-energy multi-stage FELs, like STARS
and FLASH II, the longitudinal space charge effects are neglected. This restriction
results to a misestimation of space charge effects in the low energy regime. The
dominance of the longitudinal space charge effects depends linearly on the space
charge factor. Thus, at higher energy regimes the dominance of the longitudinal
space charge impacts decreases. The following test is characterised by a vanish-
ing longitudinal space charge impact. It is achieved by a long bunch at a high
energy regime. The lattice design corresponds to the chicane scheme, introduced
in section 4.1. For this test the bunch does not contain an energy chirp, whereby
the compressing effect of the chicane vanishes. A similar lattice is intended for
the bunch compression in STARS. The average particle energy is 325MeV . The
bunch cross section is circular with the radius (RMS) of 0.1mm and the longi-
tudinal dimension (RMS) of the bunch is 0.5mm. The calculations of P12 and
Trace3D yield almost identical final dimensions of the bunch and similar trans-
fermatrix elements. But the correlation element σ15 differs. It is probably based
on the neglecting of the longitudinal space charge impact. Nevertheless, another
feature of space charge effects is demonstrated by both programs.
The impact of space charge can lead to the generation of additional dispersive
terms, like shown in figure 4.7. The dispersion value increases in dependency of
the bunch charge. From this follows that the chicanes have to be adjusted to the
expected space charge fields as well.
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Figure 4.7: Impact of Space Charge Effects on Dispersion
This plot shows the development of the dispersive element R16 along a chicane for three
different bunch charges. In the case of excluding space charge effects the dispersion at
the end of the chicane is balanced. In the case of including space charge at the end of
the lattice the dispersion is unbalanced.

4.4 ASTRA

ASTRA is a particle tracking program, whose main task is to calculate space
charge effects and their impacts on the charge distributions in return. The mean
range of applications is the simulation of the development of bunches in first ac-
celerator stages, like rf-guns and further accelerator cavities. ASTRA calculates
with ’macro’-particles to accomplish the high number of elementary particles. The
first test of consistence of the simulation of the impacts of space charge effects
is performed at a drift lattice. Further tests should prove a correct computing of
space charge effects in quadrupoles. Unfortunately, a comparison of the results
of particle tracking programs with the results of analytical programs is hard to
manage. The correct comparison of the results requires identical input data for
both programs. Analytical programs, like P12, use approaches and approxima-
tions to simplify the calculation. The hard edge approximation merges the effects
of fringing fields and the ’main’-fields to effective values. Due to this approach, the
field distribution becomes discontinuous. The derivation of the field distributions
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tends to infinity at the border of the element. In particle tracking programs, like
ASTRA, such singularities often produce numerical errors. Moreover, the devel-
opment of second moments of different distributions are similar, but not identical
[21]. The code P12 bases on the equivalent beam model while the results of the
simulations of ASTRA are generated with a gaussian charge distribution. As a
consequence the results of the simulations can differ from each other. Neverthe-
less, the results of both programs should show a similar development of the RMS
beam size. For consistency a long FODO-lattice is tested. All tests are performed
in a lower energy regime. The average particle energy is around some tens of
MeV. This leads to a higher dominance of space charge effects.

DRIFT 10m

A drift element is suitable in order to demonstrate the effect of space charge, as
the defocusing effect of space charge will not influenced by any external focusing
parameters. Figure 4.8 shows the development of a beam cross section with and
without the impact of space charge defocusing in a drift. The parameters are
a average particle energy of 6.5MeV , a radius of the beam cross section at the
beginning of the drift of 0.8mm, bunch length of 3mm, the bunch charge of 77nC
and transversal, γ normalised emittance of to 1mm mrad.

Figure 4.8: Development of the Bunch Cross Section along a Drift Lattice
In this figure the different development of the dimensions of the bunch cross section
including and excluding space charge effects is shown. The dimensions of the cross
section with space charge increase up to 200 % of the dimensions of the beam cross
section without the impact of space charge.
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In figure 4.8, a good agreement between the results of ASTRA and P12 for the
drift section is presented. In the case of a low value of the ratio of energy spread
and average particle energy, the bunch length remains constant while longitudinal
space charge effects are excluded. Including longitudinal space charge effects the
bunch length changes, figure 4.9. As a consequence the space charge factor can
change.

Figure 4.9: Bunch Length Changes along a 10m Drift
This plot shows the changing of bunch length caused by longitudinal space charge ef-
fects.

Quadrupole

In order to test the correct calculation of space charge effects in quadrupoles,
a special lattice is created. This lattice consists of a quadrupole surrounded by
two 0.25m drifts . The quadrupole focuses in x-direction with a focusing strength
of 0.52m−2, which yields a focus of 3.836m (quadrupole length = 0.5m ). For a
strong impact of space charge effects the average particle energy is set to 23MeV .
A change of the longitudinal bunch dimension is dominated by the longitudinal
space charge effect. Tracking programs often struggle with numerical errors pro-
duced by singularities, like hard edge approach. Outside the quadrupole, the
further development of the beam cross section can be used for an estimation of
the transition impact.
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Figure 4.10: Bunch Cross Section Development in Drift-Quadrupole-Drift-Lattice
In this plot the developments of the dimensions of the bunch cross section including
and excluding space charge are shown.

The results of the calculation of a quadrupole by ASTRA and P12 without space
charge impacts agree. The results of the space charge test show some slight dif-
ferences, see figure 4.10. For the RMS beam size in x-direction, there is a perfect
matching between P12 and ASTRA. A dismatch is shown in y-direction inside
the quadrupole. This could be related to the transition from the drift to the
quadrupole field.

FODO-Lattice

In order to test the correct calculation of space charge effects in combinations of
many quadrupoles and drifts, the FODO-lattice, which was already introduced
in chapter 4.3 , is used. Furthermore, the parameters of the beam as well as
the parameter of the lattices remain the same, see chapter 4.3. While the space
charge effects are neglected, ASTRA and P12 demonstrate a perfect matching,
figure 4.11. A similar, but not identical, development of the bunch cross sec-
tion is shown in figure 4.11, while space charge effects are included. The space
charge effects generate a dismatch between lattice design and beam, which leads
to a beat. Small deviations in lattice design, bunch properties or the calculation
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Figure 4.11: Bunch Cross Section Development along a 4×FODO-Lattice
At the low energy regime the defocusing effects of space charge change significantly the
development of the bunch cross section.

of space charge effects can cause a greater deviation in the development of the
bunch. This FODO-lattice test is also performed in higher energy regimes. At a
high energy regime, e.g. 1GeV, the impact of space charge can decrease to a level,
where the beam remains matched to the lattice. Since the differences between the
beam cross sections including and excluding space charge effects is small, the de-
viations are compared. In figure 4.12 the development of the beam size deviation
produced by space charge effects is plotted. The results of ASTRA corresponds
to the results of P12. But this test is not that meaningful. ASTRA is a particle
tracking program and P12 calculates analytical, i.e. the lattices of both program
differs. The simulation of the complex field-constructions, which are included in
ASTRA, is not possible with P12, whereas the hard edge approximation of an-
alytical programs generates numerical errors in the code of ASTRA. Since the
numerical errors are small, they can be neglected under certain circumstances.
The hard edge approximation is not applicable for this test, because the results of
the test are in the same order of magnitude of the produced errors or even smaller.
Due to the modified field distribution the development of the bunch size changes
slightly. The maximum of the relative discrepancy of the beam size amounts to
2 %, which might have affected the result. Nevertheless, the figure 4.11 demon-
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Figure 4.12: Development of the Beam Size Deviation along a 4×FODO-Lattice
This plot shows the development of the beam size deviations produced by space charge
effects.

strates the need of including space charge effects in simulations for reliable results.

4.5 WAVE

’WAVE’ is a program created at BESSY [25], which calculates focusing effects
as well as coupling effects in the transverse plane of undulators. The results
are determined by fast tracking. This program consists of many different modes
for the treatment of undulators. For the test of the undulator models of P12
analytical models are used in WAVE. The approximations of the undulators in
P12 are similar to the ’Halbach’-models in WAVE. Tests with planar undulators
have shown good agreements. In the case of elliptical undulators, the tests become
difficult for arbitrary polarisations. The field distribution as well as the peak-
values of the magnetic field strength are very sensitive to parameters like shifting
and gap. For the benchmarking some examples, where the assumptions made in
the code P12 are valid, are created. The boundary conditions of a test are an
average particle energy of 2300MeV, no endpoles, a field strength in x of

√
2T ,
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a field strength in y of 0.5
√

2T and 59 periods. The transfermatrices of P12 and
WAVE show a good agreement. The transfermatrices are:

WAVE


0.9632577 2.913791 2.995E − 7 −4.519E − 6
−2.47512E − 2 0.9632649 5.081E − 6 7.375E − 6
9.756E − 6 2.14E − 5 0.8557636 2.806757
4.894E − 6 7.355E − 6 −9.5367439E − 2 0.855711

 ,

P12



0.963263659 2.913793 0 0 0 −5.2905E − 7
−2.47523E − 2 0.963263659 0 0 0 −3.564639E − 7
0 0 0.8557542 2.8067421 0 −1.03866E − 6
0 0 −0.095372 0.8557542 0 −6.86739E − 7
3.564639E − 7 5.2905E − 7 6.86739E − 7 1.03866E − 6 1 7.2439E − 6
0 0 0 0 0 1

 .

Further tests and discussions with undulator experts at BESSY confirm that in
these approximations the focusing of undulators with and without shifted rows of
magnets are the same, as long as the RMS-fields strength remain identical. Thus,
the undulator subroutine for elliptical undulators in P12 can be used for the de-
termination of the focusing effect of elliptical electron path designed undulators
as well as of undulators with a planar, but rotated plane of motion for charged
particles.

Figure 4.13: Rotated Plane Motion and Elliptical Motion
This figure displays the different kinds of paths through undulators (with endpoles).

Note that, in P12 the field strength as well as the undulator K-value are RMS-
values. The field distribution is assumed by a sinusoidal function (in P12). That
means, the peak value of magnetic strength, used in WAVE, corresponds to

√
2·

RMS-value of magnetic strength in P12. The same is valid for the undulator pa-
rameter.
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HGHG-Structures

The title of this work is Space Charge Effects in cascaded HGHG-FELs. So far
only the space charge effects in accelerator optics are discussed. In the following
a short description of the FEL-physics introduces the conjunction of beam optics
and FEL-performance. Furthermore, the impact of transversal space-charge ef-
fects is investigated at two future FEL-projects, STARS and FLASH II. The per-
formances of these FELs are tested with the simulation code Genesis1.3. There-
fore, the transverse space charge defocusing was implemented in Genesis1.3. The
code Genesis1.3 provides two different calculation schemes, i.e time-dependent
and time-independent calculation mode. The time-dependent calculation algo-
rithm is required for the simulation of effects like superradiance, which is expected
in the radiators of the second stages of FLASH II and STARS. Since there is no
superradiance expected in the first stages of FLASH II and STARS, the simula-
tion of the FEL-process can be performed with the time-independent algorithm.
To demonstrate the differences between both algorithms, the time-dependent cal-
culation algorithm is used for the simulation of FLASH II and the simulation of
STARS is performed with the time-independent algorithm.
The combination of undulator configuration and properties of the used electron
bunch determines the resonance frequency of the undulator [8]:

λres =
λu

2γ2
(1 + K2). (5.1)

The resonance frequency λres is defined by the undulator period λu, the undula-
tor parameter K and the average particle energy, expressed by γ. The radiation
output properties of the High-Gain FELs are characterised by two competing
processes, coherent radiation and shot noise [26],[27]. Nevertheless, all radiation
within a frequency range near the resonance frequency becomes amplified. Here,
the density fluctuations inside the bunch define the final frequency spectrum.
In the case of SASE-FELS, Self-Amplified Spontaneous Emission, this leads to
a wide spectrum. For a better frequency spectrum several seeding schemes, e.g.
HGHG-FEL scheme, have been developed. The process of seeding establishes an
energy modulation along the bunch. Due to the impact of dispersion this energy
modulation leads to a density modulation, called microbunching. The structure
of microbunches depends of the wavelength of the seeding radiation λseed [28].
Unfortunately, high-power, short-wavelength LASER sources for seeding are not
available. This lack can be bypassed by shifting the frequency up-conversion in the
FEL-process as proposed for the HGHG-FEL scheme. In the HGHG-FEL scheme
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several undulator types with different resonance frequencies are combined to one
FEL. In the case of FLASH II, there are two HGHG-stages, each consisting of
two different undulator types, merged to one FEL-facility.
In the first stage the rear part of the electron bunch is used for generating the
seed radiation for the second stage. The seeded part of the bunch becomes energy
modulated in the first undulator, called modulator, i.e. it becomes seeded. Due
the the impact of dispersion this energy modulation leads to a density modula-
tion, called microbunching. The microbunching can be optimised for a certain
harmonic of the seeding wavelength λseed. The microbunched part will emit co-
herently in the following undulators, called radiator. This radiation mirrors the
properties of the seeding radiation with expectation of the wavelength, which can
be a harmonic of the seed [27]. However, the quality of the seeded part of the
electron bunch suffers from the frequency up-conversion-process.
For the other parts of the bunch the process of density modulation and emission
is suppressed, because they are not that strong energy modulated. Nevertheless,
these parts are influenced by the emission of synchrotron radiation as well as by
the optical features of the lattice.
In the second stage a new section of the bunch is used to generate further radia-
tion. The matching of the bunch section and the radiation, which was generated
in the first stage, is achieved by a chicane, where the electron bunch is retarded
by an loop way through a chicane [29]. In the second stage the FEL process takes
place similar to the first stage.
Since the resonance wavelength should be small, high energy electrons are used,
e.g. STARS E = 325MeV or FLASH II E = 1.2GeV . Albeit the average particle
energy is high in the HGHG-FELs, the length of the magnetic lattice leads a sig-
nificant impact of space charge force. For example the impact of the longitudinal
space charge leads to a reduction of the microbunching. In Genesis1.3 this effect
is approached by the model of plasma oscillations.
A criterion of the amplification process in FELs is given by the charge density. In
a linear approach space charge effects cause an additional expansion of the bunch,
which is escorted by a reduction of the charge density. This leads to a significant
impact of the final FEL radiation output power, because the reduction of the ra-
diation output power in the first stage effects also a lower energy modulation in
the second stage. In Ref. [28] the dependency of the output radiation power and
input radiation power for the simulation of the DUV-FEL is presented. There is
a stable region, where small difference in the seed power have almost no effect.
Nevertheless, the impact of space charge of previous sections on the electron
bunch are still present in further sections. This is taken into account in the sim-
ulations of STARS and FLASH II.
In the following plots the impact of the transverse space charge effects on the
properties of the radiation output is presented. For the simulations two different
proposed HGHG-FEL-facilities, FLASH II and STARS, are chosen. Parameters
of FLASH II are an average particle energy of 1.2 GeV and a maximum peak
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current of 1.8 kA. In the test facility STARS the average particle energy is about
325 MeV , whereby a maximum peak current of more than 0.5 kA is aspired.
Note that, in the simulations of FLASH II and STARS longitudinal space charge
effects are always taken into account.

5.1 FLASH II

The FLASH II facility is a two-stage HGHG-FEL. The aim resonance wavelength
is in the regime of several nanometers, e.g. 4nm. In the following simulations the
wavelength of the final radiation output is 8 nm. The average particle energy is
1200MeV . In the first stage a planar undulator, characterised by a period length
of 80 mm over 20 periods, is used for seeding. The seeding wavelength is 200 nm.
The radiator of the first stage contains of two undulators. The undulator param-
eters are: a period length of 62mm, a number of periods of 30 with an undulator
parameter of 2.47. Due to the required tunability of the resonance wavelength
the fragmentation of the radiator becomes necessary in order to maintain the
quality of the radiation output. In the space between the undulators optical ele-
ments focus the beam, which leads to a higher output power. Furthermore, the
microbunching of the bunch is very important for the radiation process in FELs.
The dispersive effects of undulators can be disadvantageous. For longer wave-
lengths one of the undulators can be turned off, i.e. the gap will be set to the
maximum value, whereby the resonance wavelength of the undulator becomes
off-resonant to the density modulation of the bunch.
In the following FLASH II simulations both undulators of the first-stage radia-
tor are in use. The resonance wavelength of the first radiator is 40 nm. For the
seeding process in the second stage the configuration of the modulator is similar
to the configuration of the first radiator. The second modulator consists of 25
periods with a period length of 62 mm. The second radiator consists of twelve
undulators. In the HGHG-mode only some of them are in use. For the following
simulation five undulators are in use. The undulator parameters are period length
of 29 mm, number of periods of 70 and undulator parameter of 1.427. For the
simulations the configuration of the radiators corresponds to a planar undulator.
Nevertheless, the proposed undulators provide helical configurations as well.
Another mode of FLASH II is SASE. In this mode the gap of all undulators in
front of the final radiator are set to the maximum value. Furthermore, all seg-
ments of the second radiator are in use, i.e. 12 × 70 periods. Figure 5.1 shows
the schematical layout of FLASH II. The following plots are based on the sim-
ulation of FLASH II in the HGHG-FEL mode. In figure 5.2(1) and 5.2(2) the
change of the radiation output power of the first stage in dependency of the peak
current is illustrated. The absolute power and the relative change produced by
space charge are shown. From these plots follows that, even in the high energy
regime (1.2GeV ) the impact of the transverse space charge can be significant.
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Figure 5.1: Design FLASH II - HGHG Undulator Section [4]
This figure presents the layout of FLASH II. The electron beam as well as the first-stage
seeding-radiation arrive from the right hand side of this scheme.

The transverse space charge effects reduce the final output power. This leads to
a lost of radiation power of about 1% at the first stage of FLASH II, simulated
with the proposed peak current of 1.8kA. The development of the radiation power
along the radiators of FLASH II are shown in the figure 5.3 and figure 5.4. The
relative change of output power is about 1% in the first radiator and about 4.2%
in the second radiator.
The difference between the output changes are caused by several facts. The sim-
ulation of the second stage radiator bases on the simulation of the first stage,
i.e. the relative change of 1% of the radiation output power of the first stage is
already included in the seeding progress of the second stage. Furthermore, the
space charge induced change of the electron bunch in the first stage is also taken
into account. So, the space charge effects cause twice in HGHG-FELs. The im-
pact of space charge on the frequency spectrum is also interesting. In figure 5.5
and 5.6 the frequency spectrums at the end of the first and at the end of the
second radiator are presented. From these simulations follow that, the intensity
of dominating wavelength seems to be stronger reduced. The differences of the
change in the frequency spectrums bases on the accounting of first-stage space-
charge effects in the second stage.
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(1) Absolute Power (2) Relative Change

Figure 5.2: Radiation Output Power at the First Stage of FLASH II - Absolute
Power(1) and Relative Change(2)
In the plots the results of the simulation of the first stage of FLASH II including and
excluding space charge effects are shown. The left plot(1) presents the radiation output
power in dependency of the peak current. The relative change produced by space charge
is presented in the right plot(2). It demonstrates, that the impact of space charge is still
significant even at a high energy regime.

Figure 5.3: Radiation Output Power at FLASH II - First Stage 1.8 kA Peak Current
This plot shows the development of the radiation output power along the first radiator.
The change of the final radiation output power is about 1%.
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Figure 5.4: Radiation Output Power at FLASHII - Second Stage 1.8 kA Peak Current
This plot shows the development of the radiation output power along the second radiator.
The impact of space charge from the previous stage is also taken into account. This leads
to a reduction of the final radiation power of about 4.2%.

Figure 5.5: Frequency Spectrum at FLASH II - First Stage
Due to the impact of space charge the radiation output power decreases at all frequencies.
The change is stronger pronounced near the resonance wavelength.
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Figure 5.6: Frequency Spectrum at FLASH II - Second Stage
The impact of space charge reduces the radiation output power at all frequencies. This
spectrum contains of two side peaks, where the impact of space charge also cause a
reduction.

5.2 STARS

STARS is planned as the test facility for the BESSY-FEL. The average particle
energy is 325 MeV . A maximum peak current of more than 0.5 kA is expected.
For the following simulations the average particle energy is 325 MeV and the
peak current is 0.5 kA. In the first modulator the electron bunch is seeded with
λseed = 800 nm. The undulator parameters are a period length of 50 mm, a
number of periods of 10 and an undulator parameter of 3.476. In the first stage
the radiator consists of two undulators, similar to FLASH II. The undulator para-
meters are 50 mm period length, 30 periods and 1.27 undulator parameter. This
leads to a resonance frequency of 160nm. The radiation output is used to seed the
electron bunch in the second stage. The second modulator has a period length of
50 mm over 30 periods with an undulator parameter of 1.27. In the second stage
the radiator consists of three undulators. The parameters are a period length of
22 mm, a number of periods of 150 and an undulator parameter of 1.26. The
resonance frequency of the second radiator is 40 nm. Note that, the undulator
parameters are tunable and the values above are used for the simulation. The
schematical layout of STARS is shown in figure 5.7. In figure 5.8 and 5.9 the
development of the radiation output power along the radiators is presented. The
change of the first stage radiation output power is about 2.4%, which is higher
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than in the case of FLASH II. The peak current in STARS is lower than in
FLASH II, but the particle energy is lower as well. In this case the relative
change of both parameter is almost the same. This leads to an increased impact
of space charge in STARS, because the energy dependency dominates. Figure 5.8
shows the development of the radiation output power along the second radiator.
For this simulation the time-independent algorithm of Genesis1.3 is used, where
superradiance cannot be calculated.

Since the occurrence of superradiance in the second radiator of STARS is ex-
pected, the results of these simulations are only valid outside the superradiance
regime. The superradiance regime in figure 5.9 is characterised by the decrease
of the radiation output power. A similar development of the radiation output
power along the radiator is shown at the time-independent simulation of FLASH
II as well. The time-dependent simulation presents a further increase of the radi-
ation output power instead of a decrease, see figure 5.4. Nevertheless, the relative
change of the radiation output power at the end of the second radiator accounts
already about 13.6 %. A further increase is expected as well. It demonstrates
again the significant impact of space charge on the performance of FELs.

Figure 5.7: Design STARS - HGHG Undulator Section [2]
This figure shows the layout of STARS. The first stage is presented in the upper scheme.
The electron beam and the seeding radiation arrive from the left hand side. The lower
scheme illustrates the ’fresh bunch’ chicane (left chicane) and the second stage.
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Figure 5.8: Radiation Output Power at STARS - First Stage 0.5kA Peak Current
This plot shows the development of the radiation output power along the first radiator of
STARS. The impact of transverse space charge leads to a reduction of the final radiation
output power of 2.4%.

Figure 5.9: Radiation Output Power at STARS - Second Stage 0.5kA Peak Current
This plot shows the development of the radiation output power along the second radiator
of STARS. The occurrence of superradiance is expected at the beginning of the third
undulator(7.7m).
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5.3 Quadrupole Readjustment

As shown above, the space charge defocusing leads to a reduction of the FEL
radiation output. A readjustment of the focusing strength of quadrupoles can
be used for the compensation of a dismatch between lattice and beam, which
is produced by space charge. For the compensation of the space charge defocus-
ing elements are required, which focus simultaneous in both transversal planes.
Therefore, quadrupoles are less suitable for the compensation of the space charge
defocusing.
Nevertheless, the readjustment of the focusing strength of quadrupoles can lead
to an improvement of the radiation output power. In figure 5.10 the radiation
output power at the last part of the first-stage radiator of STARS is presented.
In this plot the radiation output power including and excluding space charge
along the radiator and the radiation output power including space charge along
the radiator with the readjustment are shown. As a result of the readjustment
the radiation output power increases. The increase corresponds to 8% of the
reduction, which was produced by space charge.

Figure 5.10: Impact of the Readjustment
In this plot the development of the radiation output power along the last part of the first
radiator of STARS is shown. The readjustment of the quadrupole strength leads in an
increase of 0.2% of the final radiation output power.
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Conclusion

FELs offer unique possibilities for many applications in research and develop-
ment. This is in particular the case for short-wavelength, short-pulse FELs with
their high peak-brilliance. The final performance of FELs can suffer from space
charge effects. The transverse space charge effects limit the minimum transverse
beam size and so the minimum available size of the radiation source. Further-
more, any dismatch between radiation and beam leads to a reduction of the final
performance, regardless whether it occurs inside the radiator or inside the mod-
ulator.
Simulation programs calculating these effects are essential in order to develop
and to investigate the necessary compensation and suppression schemes. Results
of such programs are limited by their initial assumptions and approximations,
used for computations. The simultaneous employment of different space charge
programs, each marked by different assumptions, gives a possibility to investigate
the impacts of the space charge effects to different orders. The program P12 is
created for fast estimations of the transverse space charge effects in multi-cascade
FELs, like STARS and FLASH II.
In the present work, the theoretical background underlying the code P12 is dis-
cussed. In this connection the model of the ’equivalent uniform beam’ is intro-
duced. This model is available, because the development of the second moment
of different charge distributions demonstrate similar behaviour. Real charge dis-
tributions are approached by an uniform charge model. Thus, the space charge
effects can be estimated without the use of particle tracking. The implementa-
tion of the space charge effects in programs including special features of coupling
elements is also discussed.
In the fourth chapter the results of the program P12 are benchmarked with those
of established programs. The results including and excluding space charge effects
fits to the results of the other programs. Furthermore, the expected small differ-
ences, which are based on the different initial assumptions and approximations,
have occurred as well. The results presented in this chapter demonstrates not only
the reliability of the program P12, but it also presents the need of accounting
space charge in the simulation of FEL performances.
In context of this work, the transversal space charge defocusing was implemented
in the code Genesis1.3 to provide the chance to estimate the impact of the
transversal space charge effects on the final FEL radiation output. The space
charge effects causes an additional defocusing of the electron bunch, which leads
to a reduction of the charge density and so to a reduction of the final radiation
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output power of FELs. In the case of HGHG-FELs the space charge effects are
particular important, because the performance of further stages depends on the
quality of the radiation output of previous stages. So, space charge effects escalate
in HGHG-FELs.
In the fifth chapter the results of the FEL-simulations of two proposed FEL-
facilities, STARS and FLASH II, are shown. The results of these simulations
demonstrate, that even in a high energy regime space charge effects can cause a
significant change in the performance of FELs. Thus, space charge effects have
to be taken into account for the valid estimation of the performances of FELs.
Nevertheless, compensation schemes will reduce the loss of performance.
Some elements tend to couple different space charge effects, e.g. coupling of trans-
verse and longitudinal space charge force in bends, it is necessary to consider this
coupling. Therefore, it could be positive to update the program P12 with subrou-
tines for the calculation of longitudinal space charge effects. This will provide the
possibility to use P12 during the design phase of the future project BESSY-ERL.
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Appendix A

Particle Optics

Introduction

The effect of electro-magnetic fields on charged particles, like electrons, is de-
scribed by the Lorentz equation. Due to these fields, particles can be forced on
designed trajectories in accelerators. In high energy accelerators, like BESSYII,
PETRA III, MLS, FLASH, where the particles become relativistic, the Lorentz
equation reads as :

~FL = q · ( ~E + c · ~β × ~B) with ~β =
~v

c
(A.1)

Due to the generation process and collective effects inside the beam, the particle
beam has a divergence. Hence, the beam has to be focused. A development of
beam optics with focusing elements is described in [9].

Elements of Linear Beam Optics

This subsection presents elements involved in the code P12. Results will be shown
and discussed in the reference coordinate system [9]. The particles are assumed
to be relativistic.

Drifts

According to Newton’s laws, if the sum of all force influencing a particle yields
zero then the particle will rest or move with a constant velocity vector. The
drift is the simplest element in accelerator physics. A drift describes a space
without any external fields. Thus, a particle moves without external influences
and its individual velocity and its propagation vector remains constant. There
is no coupling between the different planes and the planes can be treated in a
separated manner.
If the momentum of the particle differ from the momentum of the reference
particle, the drift will have an effect on the particle displacement. The special
coordinate system used in accelerator physics simplifies the problem. Assuming,
the initial particle coordinates in phase space are (a1, a

′
1), the final displacement

after a drift length L becomes :

a1(L) = a1(0) + L · a′1(0). (A.2)
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Since the propagation vector is constant, a′1 remains constant.

a′1(L) = 0 + a′1(0). (A.3)

The effect of drifting can be expressed by a matrix formula(
a1(L)

a′1(L)

)
= M ·

(
a1(0)

a′1(0)

)
(A.4)

with M =

(
1 L
0 1

)
(A.5)

For a relativistic particle the longitudinal plane has to be modified by the Lorentz-
transformation. The full 6× 6 -matrix is:

M =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

γ2

0 0 0 0 0 1

 (A.6)

The following representation illustrates the effect of drifts.

Figure A.1: Impact of a Drift
The impact of a drift is a displacement, where the propagation vector remains con-
stant.
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Bending Magnets

Bending Magnet - Sbend
The Sbend is a special kind of bending magnet. Due to its special design the
beam perpendicularly enters the element. The impact of the bending field starts
simultaneous along the hole bunch cross section.

Figure A.2: Sbend

This figure shows the diagram of a Sbend.
The particle beam enters and leaves the
magnetic field perpendicular.

The equations of motion (eq.2.1,
eq.2.2) for a pure Sbend, bending in
xz-plane, simplify to:

x′′(s) +
1

R2(s)
x(s) =

1

R(s)

∆p

p
,

y′′(s) = 0.

In the non-bending plane the develop-
ment of the particle beam is similar
to the development in a drift section.
In the bending plane a focusing effect
occurs, so-called ’weak’ focusing.

This focusing effect is based on the approach of particle paths inside a bending
magnet. It is illustrated below. Two identical, charged particles pass the bending
magnet. The paths are marked by their colours, blue and black. In the figure A.3
the two paths approach each other and cut.

Figure A.3: Weak Focusing

The weak focusing is an effect, which is based on the rotation of the bunch inside a
bend.
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An approach for the solution of the homogeneous differential equation is:

x = Acos(
s

R
) + Bsin(

s

R
),

x′ = −A

R
sin(

s

R
) +

B

R
cos(

s

R
).

The boundary conditions are set to x(0) = x0 and x′(0) = x′0. This leads to:

(
x(s)
x′(s)

)
=

(
cos( s

R
) R · sin( s

R
)

1
R
· sin( s

R
) cos( s

R
)

)
·
(

x(0)
x′(0)

)
.

In the case of ∆p
p
6= 0, i.e. the particle is characterised by a momentum deviation,

the particle moves on a dispersion path (D(s)). In linear optics dispersion takes
place , if 1

R
6= 0 (eq.s 2.1 and eq. 2.2). The differential equation of the dispersive

path is:

D′′(s) +
1

R2
D(s) =

1

R
, (A.7)

solves to give:

D(s) = Acos(
s

R
) + Bsin(

s

R
) + R,

D′(s) = −A

R
sin(

s

R
) +

B

R
cos(

s

R
),

D′′(s) = − 1

R2
(Acos(

s

R
) + Bsin(

s

R
)).

For initial conditions: D(0) = D0 and D′(0) = D′
0, it results in :

A = D0 −R,

B = D′
0 ·R.

The equation of dispersion leads to:

D(s) = (D0 −R)cos(
s

R
) + D′

0Rsin(
s

R
) + R,

= D0cos(
s

R
) + D′

0sin(
s

R
) + R(1− cos(

s

R
)), (A.8)

D′(s) = −D0

R
sin(

s

R
) + D′

0cos(
s

R
) + sin(

s

R
). (A.9)
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In the longitudinal plane, a
effect similar to dispersive
effects occurs, which leads
to a change of the position
along the bunch in depen-
dency of the momentum de-
viation. This is discussed in
more detail in [9].

Figure A.4: Dispersive Effect

Particles with different momentums move on differ-
ent paths, whereby a higher momentum is related to
a larger radius.

In summary the effect of Sbends is expressed by the following matrix:

(A.10)

RSbend =



cos( s
R
) Rsin( s

R
) 0 0 0 R(1− cos( s

R
))

−1
R

sin( s
R
) cos( s

R
) 0 0 0 sin( s

R
)

0 0 1 s 0 0
0 0 0 1 0 0
−sin( s

R
) −R(1− cos( s

R
)) 0 0 1 − s

γ2 + (Rsin( s
R
)− s)

0 0 0 0 0 1

 .

Edge Focusing - Thin Lens Approximation
If the beam did not enter perpendicular the field of a bending magnet, an ad-
ditional effect occurs, which influences the beam divergence. This effect can be
simulated by introducing an additional ’magnetic wedge’ [23].

Figure A.5: Edge Focusing

Particle with transverse displacement
take a different path through the mag-
netic field. This path length difference
causes the focusing effect.

The path length deviation in a bending
magnet for a particle with the displace-
ment x = x0 amounts to:

∆l = x0tan(α). (A.11)

A different path length inside a bend-
ing magnet causes a different change of
the propagation vector. Any difference
in the length of paths can be trans-
formed into an angle(∆):

∆ =
∆l

R
= x0

tan(α)

R
. (A.12)

Particles, which enter the yellow part of the edge, experience an additional bend-
ing. Particles in the green part experience the inverse effect of bending. Edges
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are used to be combined with bends. The transfermatrix of an edge is:

Medge =



1 0 0 0 0 0
tan(α)

R
1 0 0 0 0

0 0 1 0 0 0

0 0 − tan(α)
R

1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (A.13)

Bending Magnet - Rbend
In contrast to the Sbends, particles do not enter and leave perpendicular the
magnet field of a Rbend. Rbends can be modelled by a combination of two edges
and one Sbend.

Figure A.6: Rbend - Calculation Scheme

This scheme shows the calculation algorithm of Rbends. A Rbend consists of a Sbend
part and two Edges, whereby angles of the two edges can differ from each other.

As a result of the edges, the particles change their propagation vectors before
entering and after leaving the Sbend part. In Rbends the ’weak-focusing’ of the
Sbend is totally compensated by the ’edge-focusing’, if the sum of the two angles
of the edges corresponds to the bending angle of the Sbend part. In summary,
a Rbend can focus in the opposite plane of bending, but the dispersion remains
identical to the dispersion of the Sbend.

Quadrupole Magnets

The focusing of radiation can be realised by lenses. Inside the lens the propagation
velocity of light decreases. Thus, the surface of constant phase can be changed
and the beam becomes focused or defocused.
The focusing of charged particles differs. Charged particles become focused by
special field configurations. The Quadrupole is one of these configurations. The
quadrupole field is marked by a constant field gradient:

dBy

dx
=

p

q
· k = constant. (A.14)
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Figure A.7: Quadrupole Design

Two magnetic pole pairs generate the field
configuration of a quadrupole. Quadrupoles
are used to focus particle beams, to pin sin-
gle atoms, etc. .

p is momentum of particle, q is
charge of particle and k is focus-
ing strength of the quadrupole. This
is a schematic plot of a quadrupole
cross section. Four coils (blue cas-
kets) generate four magnetic poles
(marked by red and green). The ar-
rows symbolise the magnetic field
direction. E.g. if electrons move out
from the picture plane, they become
focused in the vertical plane and de-
focused in the horizontal plane. For
particles with the opposite propaga-
tion direction, the focusing and the
defocusing plane have changed.

The equation of motion for particles in quadrupoles is given by eq.2.1 and eq.2.2.
In the following example the quadrupole focuses in the yz-plane. The equations
of motion are:

I x′′ − kx · x = 0,

solves to give:

x(s) = A · sinh(
√

kxx) + B · cosh(
√

kxx),

x′(s) =
√

kx(A · cosh(
√

kxx) + B · sinh(
√

kxx)),

x′′(s) = kx(A · sinh(
√

kxx) + B · cosh(
√

kxx)),

with boundary conditions: x(0) = x0 and x′(0) = x′0

⇒ x(s) = x0 · cosh(
√

kxs) +
x′0√
kx

· sinh(
√

kxs)

II y′′ + ky · y = 0

solves to give:

y(s) = A · sin(
√

kyy) + B · cos(
√

kyy)

y′(s) =
√

ky(A · cos(
√

kyy)−B · sin(
√

kyy))

y′′(s) = −ky(A · sin(
√

kyy) + B · cos(
√

kyy))

boundary conditions: y(0) = y0 and y′(0) = y′0

⇒ y(s) = y0 · cos(
√

kys) +
y′0√
ky

· sin(
√

kys)
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The element R56 is defined by lqF
γ2 , where lqF corresponds to the longitudinal

dimensions of the quadrupole. So, the transfermatrix results in:

(A.15)

cosh(ϕx)
1√
|kx|

sinh(ϕx) 0 0 0 0√
|kx|sinh(ϕx) cosh(ϕx) 0 0 0 0

0 0 cos(ϕy)
1√
|ky |

sin(ϕy) 0 0

0 0 −
√
|ky|sin(ϕy) cos(ϕy) 0 0

0 0 0 0 1 lqF
γ2

0 0 0 0 0 1


with ϕi =

√
|ki|lqF , which corresponds to the phase.
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Appendix B

RMS Value

Different distributions f(x) are characterises by their moments. The first mo-
ment of a distribution is the expectation value E(f). It is:

< x >= E(f) =

∞∫
−∞

xf(x)dx. (B.1)

The second moment of a distribution is also known as the variance V (f). It
describes the statistical scattering or the root mean square (RMS) value. It is
defined by the expectation value:

V (f) =

∞∫
−∞

(E(x)− x)2f(x)dx. (B.2)

If the expectation values of a distribution vanishes, then eq.B.2 becomes:

V (f) =

∞∫
−∞

x2f(x)dx. (B.3)

Note, that the distributions f is normalised.

charge distribution

The equivalent beam model bases on the following charge distribution, which was
introduced for the space charge calculations. In this model a homogeneous dis-
tribution is assumed. The profile function, A(x) implies the boundary conditions
of the distribution:

A(x) = A0(1−
x2

a2
), (B.4)

where a is the maximum extension of the distribution and A0 is the normalisation
factor, which is determined by:

1 =

a∫
−a

A0(1−
x2

a2
)dx = A0

4a

3
.
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The second moment becomes:

σ2
x =

∞∫
−∞

A0x
2(1− x2

a2
)dx =

a2

5
,

⇒ a =
√

5σx. (B.5)

Hence it follows, that the borders of the equivalent beam corresponds to
√

5 the
second moment of the exact distribution. Two further distributions are of interest,
because they are often used in approaches in accelerator physics. The first one
is a double Θ-function. E.g. in photo-rf-guns the profile of an electron bunch a
modelled by a flat top model, which corresponds to a double Θ-function. This
profile is generated by the radiation, which is used to generate the bunch.

Double-Θ-function

Figure B.1: Double-Θ-function

In Photo-rf-guns short radiation pulses are
used to generate electron bunches. A model
of the profile of such pulses is shown in this
figure.

The profile function is defined by:

A(x) = A0(Θ(x + τ)−Θ(x− τ)),

⇒ A0 =
1

2τ
.

The second moment of the double-
Θ-function is:

σx =
τ√
3
.

Gauss-function

Figure B.2: Gaussian Function

The profile of electron bunches in storage
rings can be approached by a gaussian
function.

The Gauss-function is defined by its
RMS-value:

A(x) = A0e
− x2

2σ2
x ,

⇒ A0 =
1√

2πσx

.

The second moment is already
known directly from the distribu-
tion.
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Appendix C

The Triaxial Ellipsoid

This appendix is a summary of the calculation of field distributions of an
uniform charged triaxial ellipsoid. In the first part the special coordinate system
is presented. In the second part a short summary of the calculation of the field
distributions [18] follows.

Coordinate System

It is convenient to choose a coordinate system suitable to the task. Due to the
symmetry of the triaxial Ellipsoid the elliptical coordinates seem to be suitable:

x = a · r · sin(θ)cos(ϕ),

y = b · r · sin(θ)sin(ϕ),

z = c · r · cos(θ).

This approach yields to very complex elliptical integrals. Another more handy
approach presented below uses specific coordinates, which are determined by the
boundary of the ellipsoid:

x2

a2
+

y2

b2
+

z2

c2
= 1. (C.1)

For the determination of the new coordinates the following two functions are
required:

f(s) =
x2

a2 + s
+

y2

b2 + s
+

z2

c2 + s
− 1 (C.2)

ϕ(s) = (a2 + s)(b2 + s)(c2 + s) (C.3)

The zeros of the second equation (C.3) present poles of the first eq. (C.2). f(s)
characterises the profile function of ellipsoids in dependency of s. If s is larger
than a, b and c it describes the profile of an ellipsoid. If s is smaller than a or b or
c it describes the profile of a hyperboloid and else the hyperboloid splits up into
two parts. In the case of s = 0 f(s) becomes the profile function of the original
ellipsoid.
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The new coordinates are functions of the zeros(ν, µ, λ) of:

f(s) · ϕ(s) = 0 (C.4)

−(s− λ)(s− µ)(s− ν) = x2(b2 + s)(c2 + s) + y2(a2 + s)(c2 + s)

+z2(a2 + s)(b2 + s)− Φ(s)

The left hand side of eq.C.4 results from the mathematical boundary conditions,
which requires three real roots. For the determination of the coordinates depend-
ing on the properties of the ellipsoid the variable ’s’ has to be eliminated. While
plugging in −a2,−b2 and − c2 for ’s’ in eq. C.4, Φ(s) and two of the three ’old’
coordinates (x, y, z) always vanish. Thus the ’old’ coordinates are replaced by
functions of ν, µ and λ as well as a, b and c:

x =
(a2 + λ)(a2 + µ)(a2 + ν)

(a2 − b2)(a2 − c2)
, (C.5)

y =
(b2 + λ)(b2 + µ)(b2 + ν)

(b2 − a2)(b2 − c2)
, (C.6)

z =
(c2 + λ)(c2 + µ)(c2 + ν)

(c2 − a2)(c2 − b2)
. (C.7)

Field Distribution of an Uniform Charged Ellipsoid

In the case of an electrostatic problem the electric field can be expressed as the
gradient of the electrostatic potential Φ(~r):

~E = −∇Φ. (C.8)

In general this potential is given by:

Φ(~r) =
1

4πε0

∫
%(~r′)

|~r − ~r′|
d3r′. (C.9)

For a uniform charge distribution the charge density can be extracted form inside
the integral. Due to the special coordinates eq. C.9 becomes:

Φu = 2πabc%0u
3

∞∫
λ(u)

ds√
ϕ(u, s)

. (C.10)

Note, that in the following the cgs-unit-system is used, i.e. 4πε0 is set to 1. In the
eq. C.10 ’u’ presents a kind of radius.The length of the semi-axis of the ellipsoid
scales with u to a · u, b · u and c · u. λ(u) stands for the greatest root of eq.
C.2 with scaled semi axis (a · u, . . .). Due to the special choice of variables two
different potential regimes have to be distinguished. Each set of a, b and c presents
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a family of similar ellipsoids. The eq. C.10 describes the potential at a special
orbital depending on u. The potential in the point ~r is connected with the radius
u0. For the determination of the potential in the point ~r the hole volume has to
be taken into account, which results a singularity at u = u0 (eq. C.9). So inside
the ellipsoid the integration over ’u’ has to split into two parts. To cover the hole
volume the integration reaches from 0 to u0 and from u0 to 1. Due to a change of
the integration variable the function ϕ becomes independent of u, which allows
the separated integrations.

s = u2t ⇒ ds = u2dt and λ = u2ν (C.11)

⇒ ϕ(u, s) = ϕ(t) · (u2)3 (C.12)

As reminder, the coordinate u determines the size of the ellipsoid, thus its meaning
in these coordinate system is similar to the meaning of the radius in the spherical
coordinate system.

u2 =
x2

a2 + s
+

y2

b2 + s
+

z2

c2 + s

The potential becomes:

Φi = 2πabc%0

1∫
0

u2

∞∫
λ(u)

ds√
ϕ(u, s)

du

= 2πabc%0(

u0∫
0

u

∞∫
ν

dl√
ϕ(l)

du +

1∫
u0

u

∞∫
0

dl√
ϕ(l)

du)

...

= πabc%0

∞∫
0

(1− x2

a2 + s
− y2

b2 + s
− z2

c2 + s
)

ds√
ϕ(s)

. (C.13)

A separation of the different parts within the brackets leads to separated expres-
sions for each direction. The potential simplifies to:

Φi = −Ax2 −By2 − Cz2 + D. (C.14)

Hence it follows, the electric field inside the ellipsoid depends linear on position:

~Ei = 2A~x + 2B~y + 2C~z. (C.15)

A, B, C and D are constant and depend on the parameters of the ellipsoid:

A = πabc%0

∞∫
0

ds

(a2 + s)
√

ϕ(s)
,
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B = πabc%0

∞∫
0

ds

(b2 + s)
√

ϕ(s)
,

C = πabc%0

∞∫
0

ds

(c2 + s)
√

ϕ(s)
,

D = πabc%0

∞∫
0

ds√
ϕ(s)

.
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[1] D.Krämer, E.Jeaschke and W.Eberhardt (editors). The bessy soft x-ray free
electron laser, 2004. ISBN 3-9809534-0-8.

[2] J.Knobloch, E.Jeaschke and W.Eberhardt (editors). STARS, proposal for
the construction of a cascaded hghg fel. BESSY report, Berlin, Germany,
2006.

[3] Proposal for FLASH II. http://flash.desy.de/flashii, 2009.

[4] Atoosa Meseck. Private Communication, 2008/2009.

[5] Introduction to FELIX. FOM-Institute for Plasma Physics Rijnhuizen.
http://www.rijnh.nl/research/guthz/felix felice, 2009.
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[12] J.Bahrdt, M.Scheer, G.Wüstefeld. Tracking simulations and dynamic multi-
pole shimming for helical undulators. Proc. of the EPAC, 2006.
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