Memo for the PCHB Meeting at Mainz

Date and location: Mo, 05.08.2013, 10:00 to 16:00, Seminar room 2 Kernphysikalisches Institut JGU Mainz

Participants: K. Aulenbacher (JGU), M. Dehn (JGU), R. Xiang (HZDR), P. Murcek (HZDR), M. Schmeißer (HZB), J. Völker (HZB) Video : T. Kamps (HZB) Distribution: D. Böhlick (HZB), A. Büchel (HZB), S. Schubert (HZB), V. Shvedunov (MSU), J. Teichert (HZDR), R. Barday (HZB)

Agenda

- Status Report HZB, Thorsten Kamps
- Status Momentatron, Martin Schmeißer
- Introduction GunLab & Diagnostic Beamline, Jens Völker
- Status Inverted DC Gun, Monika Dehn
- Status Time Response Measurements & PCA, Eike Kirsch
- Status Transfer System, Petr Murcek
- Operation Experience with Transfer System, Cathode #2013.2, Rong Xiang
- Discussion Transfer System and Cathode Plug holding mechanism

SPONSORED BY THE

Federal Ministry of Education and Research

05K12CB2-PCHB

Status of activities at HZB

PCHB Collaboration Meeting JGU Mainz, 05.08.2013 T. Kamps | kamps@helmholtz-berlin.de

- 1. Overview (TK)
- 2. Status and outlook momentatron (Martin Schmeißer)
- 3. Introduction to GunLab (Jens Völker)

This talk

Status of work related to PCHB and SRF Gun development

- Discussion with MSU
- Official and administrative matters

2

Task	Status	Next Steps
Setup of apparatus to study fieldemission from cathodes and cathode substrates → FE Setup	Physics and engineering design completed. All parts ordered.	Setup and commissioning with DFEA cathodes in autumn 2013.
Design of compact monitor to measure the transverse and longitudinal momentum distribution of photoelectrons → Momentatron	Physics design with simulation studies and error estimates finished. → see presentation by	Engineering design, construction and test. y Martin Schmeißer
Design of beam monitors for photoelectrons after acceleration in SRF photoinjector → GunLab	Discussed options for collaboration between HZB and MSU. Agreed on longitudinal phase space monitors, beam energy measurements	Physics design and writing of specs document

FE Setup under construction at HZB: Test dark current emission from substrates and cathode films

DC-setup for field emission study

Current measurement and Image of the emitters on the view screen Constant gap d=0.4 mm Gradient can be changed by controlling bias voltage (U_{max}=10 kV)

T. Kamps | kamps@helmholtz-berlin.de |

Δ

Cavity design and beam dynamics Engineering of cryomodule GunLab location and discussion with MSU Cathode preparation and analysis activity

5

Gun cavity design follows goals of low emittance, high average current and low beam losses

Low emittance → high launch field during electron beam emission, high peak field and high launch phase. Enable retractable cathode plug to obtain RF focusing during electron emission.

High average current → achieve good propagation of HOM to absorber, damping capabilities. Enable insert for normalconducting, high QE cathode.

Avoid losses of unwanted beam, dark current generation from field emission → keep peak field in cathode surface within limits.

Table 1: Cavity field parameters relevant for beam dynam					
ics studies for 2 MeV target exit energy.					
	$E_l = E_{max} \cdot G_{FF} \cdot \sin \phi_l$				
No.	$\Delta z_{\rm cath}$	$G_{\rm FF}$	E_{max}	ϕ_l	E_l
	mm		MV/m	degL	MV/m
Gun0 1.6	0	0.99	21	27	9.4
CDR 0.6	-1.5	0.74	44	15	8.4
Gun1 0.4	-1.0	0.82	48	21	14.0
Gun1 1.4	-1.5	0.79	26	41	13.4
Gun1 1.4	-2.0	0.69	26	39	11.3

Elliptical 1.4 cell 1.3 GHz with Choke filter A. Neumann, **LINAC 2012** Cathode cell Choke cell Gun cell Beam pipe Petrov filter cathode pos. 0 mm 0.5 -0.5 E_{z} (V/m) -10-1.5 -2.5 -0.5 -1 ō 0.05 0.1 0.15 0.2 0.25 z (m) Gun0 1.6cell -0.0mm 100 CDR 0.6cell -1.5mm 1.9 Gun1 0.4cell -1.0mm

T. Kamps | kamps@helmholtz-berlin.de |

T. Kamps, LINAC 2012

6

Cryomodule design in line with staged approach towards BERLinPro goals (brightness, current)

Houses one 1.4 cell 1.3 GHz gun cavity, SC solenoid, beamline HOM absorber, steerer package Is completely LHe cooled

T. Kamps | kamps@helmholtz-berlin.de |

Inside the SRF gun cryomodule. Cold mass will assembled at JLAB and tested at HoBiCaT.

8

The main goal is to commission and characterize the electron guns for BERLinPro prior to installation in the BERLinPro accelerator hall.

Gunlab is also a platform for collaborative research (Verbundforschung) on photocathodes (DE-RU PCHB), beam dynamics, instrumentation (TCAV with TU Dortmund, longitudinal phase space with MSU)

9

Meeting with HZB and V. Shvedunov on 09.07.2013 \rightarrow goal was to find area of collaboration, define tasks

- HZB and MSU will collaborate on beam energy measurements and longitudinal phase space measurements.
- Next step: Write specs report together and produce call for tender.

Task	When?	Who?
Drafting of a MoU between	As soon as	TK and VS
HZB and MUS	possible	
Physics design including	Now to	MSU and HZB (Jens
simulations of all	01.11.2013	Völker)
measurement scenarios.		
Call for tender for	11/2013 to	HZB
components	01/2014	
Production of components	01/2014 to	company
(from drawing room to test	07/2014	
measurement s)		
Shipment/ customs	07/2014 to	company
	08/2014	
Setup and checkout at Gunlab	08/2014 to	HZB and MSU
	09/2014	

Tasks and timeline for the energy measurement project

Status of photocathode preparation system S. Schubert (at BNL)

Preparation chamber shipped from HZB and setup at BNL (December 2012) During commissioning detected leak in preparation chamber. After attempts with various sealants dismantled chamber. Cut off and replace leaking flange. Pumping down now (August 2013)

T. Kamps | kamps@helmholtz-berlin.de |

Method	Abbreviation	Which Information can be obtained?
Grazing incidence small angle x-ray scattering	GiSAXS	Thickness Morphology/Growth mechanism
X-ray reflectivity	XRR	Thickness Roughness
X-ray diffraction	XRD	Lattice information Preferred orientation
Core-level x-ray photoelectron spectroscopy	XPS	Chemical composition of surface layer (3-6 nm)
UHV- atomic force microscopy	UHV-AFM	Morphology Roughness

...combine these methods with in-situ measurement of photocurrent to uncover correlations between growth, structure and perfomance.

S. Schubert

X21 (NSLS) and G3 (CHESS) beamline experiments enable growth and GiSAXS, XRR and XRD

Prepare CsK2Sb and observe evolution of diffraction pattern, thickness and QE

S. Schubert

Financials Reporting duties Webpage

<u>Planung:</u>		abrechnen:	Plan (wird ange	epasst):	
	Gesamt	2012	2013	2014	2015
0813: Material	3.000,00		1.200,00	1.200,00	600,00
0837: Personal	101.547,43		40.000,00	40.000,00	21.547,43
GK (75%)	76.160,57	0,00	30.000,00	30.000,00	16.160,57
0847: Invest.	176.000,00	28.483,71	30.000,00	100.000,00	17.516,29
0838: Reisek.	10.008,00	2.517,94	5.000,00	1.000,00	1.490,06
0850: Sonstige	35.000,00	72,00	13.000,00	13.000,00	8.928,00
Summe	401.716,00	31.073,65	119.200,00	185.200,00	66.242,35

- In 2012 we spent all funds according to plan, invest into FE setup (30k) and travel costs to allow Martin participation at P3 workshop.
- In 2013 we want to invest into GunLab diagnostics (30k) → If possible shift part of GunLab to 2014 and invest into momentatron.
- In 2014 the invest is for GunLab diagnostics (100k).
- In 2015 the invest is for the momentatron (30k) \rightarrow Move this to 2013.

	4	Α	В	С	D	E	F
					Zwischenberichte Vorlagefrist lt.	Schlussbericht	
					Nebenbestimmung / Änderung	Vorlagefrist It.	
		Förderkenn-	Zuwendungs-		durch Ergänzung im	Neben-	
1	L	zeichen	empfänger	Projektende	Zuwendungsbescheid	bestimmung	Nebenbestimmungen
		05K12CB2	Helmholtz-	30.06.2015	jeweils 6 Wochen nach Ablauf des	31.12.2015	s. NKBF98 Nr. 8 (wobei 8.3. von uns
			Zentrum Berlin		Kalenderhalbjahres (also zum		nicht benöitgt wird, einfach reicht.)
					15.2. und 15.8. des Jahres) / Ihre		
					Berichtspflichten für das		
					abgelaufene Haushaltsjahr sehen		
					wir dann erfüllt an, wenn uns ein		
					Zwischenbericht als Teil des		
					Zwischennachweises vorliegt (der		
					Zwischennachweis ist zum 30.4.		
2	2				des Jahres fällig)		
		05K12CR1	Helmholtz-	30.06.2015	jeweils 6 Wochen nach Ablauf des	31.12.2015	s. NKBF98 Nr. 8 (wobei 8.3. von uns
			Zentrum Dresden -		Kalenderhalbjahres (also zum		nicht benöitgt wird, einfach reicht.)
			Rossendorf e. V.		15.2. und 15.8. des Jahres) / Ihre		
					Berichtspflichten für das		
					abgelaufene Haushaltsjahr sehen		
					wir dann erfüllt an, wenn uns ein		
					Zwischenbericht als Teil des		
					Zwischennachweises vorliegt (der		
					Zwischennachweis ist zum 30.4.		
З	3				des Jahres fällig)		
		05K12UM1	Johannes	30.06.2015	jeweils zum 30.4. des Jahres.	31.12.2015	s. BNBest-BMBF 98 Nr. 3 (wobei 3.3.
			Gutenberg-				nicht benötigt wird, einfach reicht.)
4	ł		Universität Mainz				

T. Kamps | kamps@helmholtz-berlin.de |

- The webpage is live, could add
 - slides from collaboration meetings,
 - reports and publications,
 - $_{\circ}~$ photos and fancy logo.

TECHNICAL DESIGN CONSIDERATIONS FOR THE MOMENTATRON

Linear dependence of radial screen coordinate on transverse momentum

$$\frac{p_x}{mc} = \frac{r}{2g+d} \sqrt{\frac{2eV}{mc^2}}$$

SEM images of electroformed grid from SPI

Grid:

1000 mesh made of Cu 50% open area 18µm hole size, 25.4µm pitch

Clamped to drift tube with Al holder

Gap Drift Path Potential g d V 3mm 56mm 50V (maybe 100V)

$$\frac{p_x}{mc} = \frac{r}{2g+d} \sqrt{\frac{2eV}{mc^2}}$$

Radial coordinate at grid

at screen

Ratio 0.00025mc : 1mm

659 x 494 px 9,9 μ m x 9,9 μ m \rightarrow about 4x4mm usable area GigE Vision (use existing LabView code) 12 bit AD

Ratio screen : cam = 20 : 4 Ratio momentum:px = 0.0005mc : 40px

Expect 100-200px resolution for beam radius

use existing lab laser with 1mW at 532nm (green)

Expand beam diameter with telescope, , mm Focus with collimation lens mm

Will test setup in Berlin

Note : Laser goes through grid, expect diffraction

Will a YAG:Ce screen work with 50eV electrons?

How much light will we see per e-?

Assume very low photon yield \rightarrow need more current (maybe 100nA) \rightarrow screen needs conductive coating

Laser power is sufficient to go up to μA at 1% QE

Several sources of errors or reduced resolution:

- Finite size of laser illuminated area, expect 100-150µm rms
 •100µm rms due to beam waist
 •First order refraction minimum from one grid hole has 88µm diameter
- Intensity modulation of electron beam due to grid
 Simulation shows strong modulation with 50µm grid (distinct peaks)
 Expect little modulation with fine grid (18µm holes)
- 3 Lens effect of the grid
 - Resolution function $F = \frac{Da}{8g} = 2.3D$ would be 38µm
- 4 Magnetic field•Earth field + pumps
 - •Shielded by μ Metal in drift path

5 Angle between cathode and grid

•Expect slight beam steering and no influence on distribution below 1deg angle

•Strong influence on distribution at larger angles

FEM Simulation mit CST: 50V, 3mm gap, hex. mesh, particle tracking in CST similar results in ASTRA tracking with 3D field from CST tetragonal solver

•Finalize design in week 32

•Get quotes for drift tube, screen, vacuum components in weeks 33, 34

- •Expect 8 weeks delivery time \rightarrow Mid October
 - •Use this time for all sorts of testing:
 - Laser setup
 - •Camera setup
 - •Write sketches of analysis programs
- •Setup at BNL end of October

Thank you for your attention!

Transfersystem Status 05.08.2013

 \Re

Bundesministerium für Bildung und Forschung

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Petr Murcek I p.murcek@hzdr.de I www.hzdr.de

Rossendorfer Beschichtungskammer mit dem Transfersystem

Member of the Helmholtz Association Petr Murcek I p.murcek@hzdr.de I www.hzdr.de

HZDR – Transferkammer

Member of the Helmholtz Association Petr Murcek | p.murcek@hzdr.de | www.hzdr.de

NEG Pumpe in der Transferkammer

Wagen

Halterung des Wagens in der Transferkammer

X-Tisch zur Kathodenbestückung

Position des Wagens in der Transportkammer

Cathode #2013.2.HZB

Bundesministerium für Bildung und Forschung

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Rong Xiang I r.xiang@hzdr.de I www.hzdr.de

Member of the Helmholtz Association Rong Xiang I r.xiang@hzdr.deI www.hzdr.de

Before

Laser on, 50 μA only with DC 100 μA with RF on One RF breakdown happened, then we could achieve only 1 μA .

During the cathode being drawn out from cavity

Out from the cavity

Member of the Helmholtz Association Rong Xiang I r.xiang@hzdr.de I www.hzdr.de

- Short cut between cavity and cathode – no DC
- No DC multipacting problem

Member of the Helmholtz Association Rong Xiang I r.xiang@hzdr.de I www.hzdr.de

cathode insert section

Member of the Helmholtz Association

Rong Xiang | r.xiang@hzdr.de| www.hzdr.de

We need new ideas

- smaller plug \rightarrow RF properties?
- New plug with safety mechanism
- SS_screw → Titanium or Mo_plug→SS_plug
- Add indium in plug for better thermal contact

•

Cathode 106 mm long plug φ10mm x 6mm (modified from HZB-plug)

- Easier for transport
- Easier for heat-cleaning

- Transport only small
 plugs
- HZB-carrier for storage and transport

Time response measurements – Inverted gun

Status of the BMBF-Project | Mainz

Monika Dehn – 05.08.2013

- High voltage for inverted gun
 - Insulator н.
 - HV connector н.

- Mechanical construction of inverted gun
 - Cathode manipulation

2

- Laser beam path
- Vacuum chamber ×.

₿₂

Construction of inverted gun Puck-adapter and manipulation

- Adapter for different puck-Systems
 - A spring inside KPH-puck is fixing the SRF-plug
 - A model is manufactured with easy fabricial materials
 - Puck: aluminium
 - Spring: bronze
- SRF-plug manipulation
 - A grabber is picking up the SRF-plug from inside
 - A model is manufactured with easy materials
 - All elements: aluminium

B_2

Construction of inverted gun Model of cathode

<u>Cathode:</u> Part of outer shape

Puck assambling: Puck is fixed by springs

Look inside: Position of puck with photocathode

<u>Spring:</u> Design will be modified again

High voltage of inverted gun

- Insulator
 - CF-flange
 - Insulator: 99,7 FRIALIT (Al₂O₃)
 - Cathode connection: Mo —

- High voltage connector
 - R30
 - U_{max} = 250kV

₿₂

Physical design of inverted gun Distance between cathode and anode: 20mm

B-2

JGU

OHANNES GUTENBERG UNIVERSITÄT MAINZ

6

6

Physical design of inverted gun Distance between cathode and anode: 20mm

B-2

Physical design of inverted gun Distance between cathode and anode: 100mm

JGU

OHANNES GUTENBERG UNIVERSITÄT MAINZ

Physical design of inverted gun **Distance between cathode and anode: 100mm**

JG

IOHANNES GUTENBERG UNIVERSITÄT MAINZ

Eike Kirsch – 05.08.2013 Johannes Gutenberg University Mainz

Motivation

Experimental setup

- Laser
- PKAT laboratory
- Measurement

First results with bulk-GaAs

- Comparison of the time response (a) λ = 400nm and λ = 800nm
- Limitations for time response measurement
- Outlook

- The energy distribution and the time structure have to be measured with high precision
 - How long are the bunches?
 - Is a halo observable?

Time response measurement

- TM-110 deflector cavity transforms the longitudinal beam profile into a transversal beam profile
- Electron bunches have to be synchronised to the RF
- Transversal profile is observable as an intensity distribution on the luminescent screen

Experimental setup

Verdi 10G

Laser

- Pump laser
- λ = 532nm
- P = 10W cw

- Modelocked Ti:Sapphire Laser (MIRA 900)
- Pulsed (~150fs) or cw
- λ = 755 890nm tuneable
- Repetition rate 76MHz
 - P_{out} ~ 1,6W @ 800nm pulsed

<u>SHG</u>

- Since april 2013
- Frequency doubler
- λ = 400nm
- P_{out} ~ 500mW

There is a possibility to bypass the SHG to measure at $\lambda = 800$ nm

PKAT

Experimental setup Radio frequency

RF parameters:

- Semiconductor amplifier replaces old klystron (since april 2013)
- f = 2,45GHz (from MAMI Master)
- P_{out} = 400W (339W at the moment)
- Synchronisation with MIRA 900 laser via a phase detector

deflector cavity

Measurement Calibration

Position on the screen:

$$x(t) = A \cdot \sin(\varphi) = A \cdot \sin(\omega t)$$
phase

Beam profile on the screen @ P = 45W and λ = 400nm

RF and laser not synchronised

If A is measured, one can do a time <> distance calibration:

e.g. 1mm ≜ 6,6ps @ 45W 1mm ≜ 2,4ps @ 339W

First results with bulk-GaAs (I)

Comparison of the beam profiles (inverted) @ P=45W

Higher absorption coefficient @ 400nm

First results with bulk-GaAs (III)

- Transversal electron beam diameter (big influence)
- Laserspot seize
- Scatter effects in the fluorescent screen
- Resolution of the camera and pixelsize (z.Z.1 Megapixel)
- Resolution of the objective
- Wavelength (emittance-growth as a function of wavelength)

Laserspot diameter @ $\lambda = 800$ nm measured by a knife-edge-profiler

Laserspot diameter @ $\lambda = 400$ nm measured by a knife-edge-profiler

 $d_{laserspot} \sim d_{electron \, beam}$

Reducing the transversal electron beam diameter means to reduce the laserspot diameter on the photocathode.

ĺnň (Ś'nň)

Outlook

- Installation of a $100 \,\mu m$ slit and a channeltron as an alternative measurement method (better resolution)
- Measurements with PCA (K₂SbCs) photocathodes
- Reduction of the laserspot diameter on the photocathode

channeltron

Thank you for your attention!