Minutes of the PCHB Meeting 13.10.2014 at JGU Memo: Victor Bechthold, 14.10.2014 Comments: TK, MAHS, 17.10.2014

Topics

Status reports from HZDR, HZB, JGU and MSU.

Attendance

JGU: Kurt Aulenbacher , Victor Bechthold, Valery Tyukin, Igor Alexander, Simon Friederich HZB: Roman Barday, Martin Schmeißer, Thorsten Kamps HZDR: Jochen Teichert, Rong Xiang MSU: Ivan Vladimirov

Agenda

See distributed agenda & slides

Discussions

Status of photocathode R&D in Dresden (presentation by Jochen and Rong):

- Explanations for the crated landscape on the Cs2Te photocathode so far not clear.
- Rong did ex-situ SEM measurements and is on the waiting list for EDX measurements.
- The use of a halogen lamp with glass bulb filled with noble gas as heater in the preparation system may be risky due to the gas volume inside the bulb. Another issue is the actual temperature which can be reached on the substrate.
- New prep system for GaAs will be setup and stay next to the SRF gun.
- Concerning the transfer system at HZDR: Is the current pump distribution with 4 x 750l necessary?

Concerning the prep/analysis and transfer systems at HZB (presentation by Martin)

- Who produces good magnetic manipulators? Mixed experience at the labs with produces from Lesker and VG Scienta.
- HZB and HZDR both want an additional view window for the insertion load lock.
- The insertion load lock can be taken off. New samples are placed in the insertion load lock in a clean room, there is no need to vent the suitcase or insert samples in a dusty lab.
- HZB will not have the custom NEG pump on the transfer system, due to space (height) constraints. HZB's vertical manipulator will be shorter.

On the spectrometer design (presentation by Ivan)

• Resolution of the spectrometer system is 0.1% at 1 MeV.

Regarding field emission measurements (presentation by Roman):

• The vacuum conditions in the FE setup are excellent, and all without baking. Setup of the system under clean conditions proved to be useful.

- Performance is limited by local vacuum pressure in the gap between cathode film and viewscreen.
- The functionality of the setup is discussed to be moved to the activation-chamber or transfer koffer of the K2CsSb apparatus. Vacuum conditions and particulates in the respective chambers could be an issue.

Regarding K2CsSb apparatus at JGU (presentation by Victor):

• Possible improvements have been collected and discussed and will be carried out

Organizational discussions

Next and closing meeting will be held May 2015 in Moscow, organized by MSU. We thank Vasiliy and Ivan for the proposal.

PCHB Collaboration Meeting

J. Teichert for the HZDR SRF Gun Group Mainz 13.10.2014

Bundesministerium für Bildung und Forschung

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Overview

- Commissioning of SRF Gun II
- "Old" Cathode Transfer System & Cs₂Te PC
- "New" Transfer System & GaAs see Rong's talk
- Prelimary Results
- Outlook

Commissioning of SRF Gun II

HZDR

- New cavity fine grain Nb, produced, treated and tested at Jlab
- New cryomodule 10 cm longer, fabricated and assembled at HZDR
- Integration of a superconducting solenoid (NbTi wire) on a x-y table with cold motors (70 K)

3

Commissioning of SRF Gun II

- Gun installation finished on May 16, 2014 without PC transfer system
- First beam with Gun II on June 10, 2014 with Cu photo cathode
- First beam in ELBE on August 12, 2014
 20 nA CW
- Installation of PC transfer system postponed to Jan. 2015
- Beam with Cs₂Te PC will start in Feb. 2015

Cs₂Te Cathode Transfer System

SRF gun I:

We found (turbo pump?) oil in transfer system vacuum leak in one DN160 full metal valve (to valve housing if valve closed)

- Disassembly and cleaning of all components at companies VACOM, VAT, DREEBIT
- Assembly with new pumps, alignment of PC carrier, vacuum check, backing again oil in the vacuum chambers!
- Postpone installation from Oct. 14 to Jan. 15
- Presently, part by part check in order to find the oil source (perhaps the again leaking full metal valve?)

5

Preliminary Results

RF – Measurements

Q₀ still > 10¹⁰ in gun much less field emission two time higher gradient than SRF Gun I

present results peak fields vertical test: 38 MV/m gun pulsed: 32 MV/m gun CW: 27 MV/m (corresponds to E_{acc}= 10 MV/m)

6

RF – Measurements

Lorentz Force Detuning

Coupler Warm Window Temperature

- higher than in ELBE modules
- new window didn't help
- coupler test bench: foulty o-ring frame

inside waveguide

mparison with	SRF gun I	TESLA cavity
_{peak} [Hz/(MV/m)²]	0.69	0.25

frame

Mitglied der Helmholtz-Gemeinscha

CO

k,

Beam Characterization

 E_{acc} = 6 MV/m (16 MV/m peak), cathode position z_{cath} = -2.1 mm

8

DRESDEN

Beam Characterization

 E_{acc} = 8 MV/m (21.6 MV/m peak) cathode position z_{cath} = -2.1 mm

Preliminary Results

Cu Cathode Properties & Dark Current

cathode scan (26.08.2014)

Preliminary Results

Beam Based Alignment

11

Elbe run 4/2014 Oct. – Dec. 2014

- Beam measurements with Cu cathode at 8 MV/m + 10 MV/m
- Solving the PC transfer system problem
- Preparation of Cs₂Te PC

Shut-down Dec. 2014 – Jan. 2015

- Instalation of the PC transfer system
- Coupler repair

Elbe run 1/2015 Jan. – April. 2015

- Beam with Cs_2 Te cathodes at 8 MV/m + 10 MV/m
- Demonstration of avarage current of 1mA in CW
- Proposal for ELBE beamtime (Accelerator Science)

12

PCHB Collaboration Meeting

Photocathode at HZDR

R. Xiang in name of SRF gun group

13.10.2014

Bundesministerium für Bildung und Forschung

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Rong Xiang I r.xiang@hzdr.de I www.hzdr.de

Cs₂Te photocathodes

170412Mo

- fresh QE 8.5%, in gun 0.6%
- total beam time 600 h
- extracted charge 265 C

Member of the Helmholtz Association Rong Xiang | r.xiang@hzdr.de| www.hzdr.de

Cs₂Te photocathode

Rong Xiang | r.xiang@hzdr.de| www.hzdr.de

Cs₂Te cathode TPK

- 2. Vacuum test out of accelerator hall
- 3. Install during the winter shut down

GaAs photocathode status

Vacuum 4x10⁻¹¹mbar. Temperature of GaAs chip ?

Member of the Helmholtz Association Rong Xiang | r.xiang@hzdr.de| www.hzdr.de

Transfer system in 2013

Transfer system status 2014.10

Manipulator quotation

1. move wagen with jaws

z =610mm movement 360° Rotation X,Y table ± 12.5 mm 2nd inner-Z movement 12mm

2. (Magnetic) move one chip with jaws Movement 600mm (√)

3. move cathode body into gun original ELBE SRF Gun manipulator (√)

- 4. (Magnetic) move puck (plug) with finger
 300 mm movement
 X-Y table ± 7.5 mm (√)
- 5. (Magnetic) move one chip with jaws Movement 330 mm (V)

iZC

R

Member of the Helmholtz Association Rong Xiang I r.xiang@hzdr.deI www.hzdr.de

FIRST LIGHT MOMENTATRON

STATUS PREP SYTEM HZB

STATUS TRANSFER SYSTEM HZB

Martin Schmeißer – PCHB meeting Mainz

13.10.2014

1

PHOTOKATHODE PREPARATION AT BNL

- $P = 1*10^{-9}$ mbar
- $P_{H_{2O}} = 4.5^{*}10^{-11} \text{ mbar}$
- Sb evaporated from PtSb beads
- Alkali metals from alvasources
- First time we could use the Momentatron
- Mounted in prepchamber

Cs evaporator

- Preparation of 10nm Sb at room temp (heater failed) on Mo substrate
- Sequential growth following Sommers recipe
- slow K deposition (2h at RT)
- K₃Sb had ~ 0.35% QE at 532nm
- Cs deposition, second Cs source activated
- Possibly over cesiated the surface
- CsK_2Sb had ~ 0.09% QE
- Surface recovers over night, ~ 0.45% QE

Linearer Zusammenhang zwischen Radius am Schirm und transversalem Impuls erlaubt Rekonstruktion der Impulsverteilung $n_r = \frac{r}{2ell}$

$$\frac{p_x}{mc} = \frac{r}{2g+d} \sqrt{\frac{2eU}{mc^2}}$$

Martin Schmeißer – PCHB meeting Mainz

MOMENTATRON – ERSTES LICHT

Rohbild

Radiales Intensitätsprofil

Region of interest

Lineares Profil

- Proof of principle
- 50eV are sufficient to generate measurable intensity on screen, but dynamic range of scintillator and optics are too low at 50eV
- No space charge issues (for now)
- Beam was off-center, deformed and the width of the intensity distribution was higher than anticipated
- \rightarrow Probably due to deformed anode and large laser spot size
- SNR is about $10dB \rightarrow$ camera cooling, higher bias voltage
- Laser spot size ca. 1mm rms, intensity distribution on the screen ca. 3mm rms

- Verbesserungen am Momentatron
 - Reparatur Anode
 - Fokussierter Laserstrahl, Notch Filter für 532nm, stabiler blauer Laser
 - Spektral aufgelöste Messungen (QE und Emittanz) mit Weisslichtquelle

STATUS PREP-SYSTEM

Julius Kühn is now in charge, engineering Daniel Böhlick

Chamber, equipment and momentatron are back in Berlin We have new lab space in Adlershof, dedicated for prep system

Vacuum upgrade

- new 400l/s turbo
- Replaces one of the getter pumps
- New tsp

Commissioning of analytic equipment

First use of X-Ray source, XPS analyzer, and LEIS

Photocathode Development		2014							20:	15											20	16					
	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
PAS back at HZB																											
Setup and vacuum commissioning																											
Specs and engineering vacuum upgrade																											
First cathode prepared at HZB																											
Commissioning PAS analysis section																											
First cathode measured in analysis section																											
Upgrade PAS vacuum system																											
Commissioning upgraded vacuum system																											
Cathode recipe for high QE prepared																											
Production of cathodes for Gun1 and Gun2																											
Specs cathode production system (CPS)																											
Engineering CPS																											
Setup CPS at Testinghalle																											
Commissiong CPS at Testinghalle																											
CPS ready for routine cathode production																											

Julius Kühn is now in charge, Kerstin Martin engineering

We need separate transfer systems for the prep chamber and gun, which are in different buildings

- TS1 for transfer to/from prep chamber
- will have load lock

TS2 for transfer into gun

		2014							203	15											201	6					
Transfer system effort	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Specs transfer system																											
Engineering koffer and transfer system																											
Construction of transfer sys #1 (-> PAS)																											
Setup and commissioning of system #1																											
Transfer system #1 ready for ops																											
Construction of transfer sys #2 (-> Gun1)																											
Setup and commissioning of system #2																											
Transfer line from PAS to Gun1 ready																											
Construction of transfer sys #3 (-> Gun2)																											
Setup and commissiong of transfer #3																											
Transfer line from PAS to Gun2 ready																											
Construction of transfer sys #4 (-> CPS)																											
Setup and commissioning of #4																											
Transfer line CPS to Gun2 ready																											

KM will place orders for chamber and manipluators soon

The pumping cross and HZDR custom pump do not fit into our lab (height)

Koffer + Wagen were manufactured, Vacuum testing & 400°C bake pending

Diskussion Fenster für Load-Lock

Diskussion Vakuum im Transfersystem

- 2 Pfade für Plugs
- Füllen des Koffers im Reinraum : Koffer sieht Luft, Plugs sind sauber
- Oder : leerer Koffer wird ausgeheizt und sieht nie Luft, Proben einschleusen über Load Lock am Transfersystem

SPECTROMETER DESIGN

13.10.2014

Design review

1 – dipole magnet, 2 – vacuum chamber, 3 – pedestal, 4 – controller corps. Mass \approx 56 kg, overall sizes = 300×320×378 mm.

Dipole magnet

1 – dipole magnet yoke, 2 – coils, 3 – spacers, 4 – laser tracker sphere holders. Yoke mass ≈ 29 kg, overall yoke sizes = $194 \times 303 \times 155$ mm. Outer yoke surfaces will be painted in color RAL 6018.

Dipole magnet

1 – dipole magnet yoke, 2 – wires, 3 – protective hood, 4 – electrical manifold. Coil mass \approx 8 kg, resistance \approx 2 Ohm. The power supply must provide maximum voltage \approx 22 V and power \approx 98 W.

Field measurement controller

1 – dipole magnet, 2 – vacuum chamber, 3 – pedestal, 4 – controller corps.

Field measurement controller

1 – dipole magnet yoke, 2 – vacuum chamber, 3 – stand for Hall probe.

Pedestal for dipole magnet

1 – plate 1, 2 – plate 2, 3 – plate 3. Mass \approx 12 kg, overall sizes = 300×320×223 mm. Thank you for your attention!

Current state of FE-setup

Roman Barday 13.10.2014

DC-Setup for FE Study

- Image of the emitters on the view screen (50 pA)
- Current measurement over the entire surface
- Local measurements* I=I(E)→β, A_e Large surface with d=10 mm: immediately Pressure ~10⁻¹⁰ mbar w/o backing Flow Box: Loemat ISO class 5 Dry Ice Cleaning (Cry Snow SJ-10)

DC-Setup for FE Study

Mo sample: two emitters, I=15 nA @ 16.3 MV/m No FE at 30 MV/m for Mo samples I=4 μ A @ 20 MV/m for Pb coated on Nb, β =284 I<50 pA @ 25 MV/m for Pb coated on Nb

Resolution of individual emitters

Federal Ministry of Education and Research

05K12CB2 - PCHB

Status K₂CsSb cathodes and time response measurements

Victor Bechthold – 13.10.2014

Johannes Gutenberg-Universität Mainz – Institut für Kernphysik

(PCA=K₂CsSb) cathode kitchen

system principle

JGU

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

recipes and procedure

Dowell [NIM A 356 (1995)]

BNL [APL Mater. 1, 032119 (2013)]

1. cleanin	g : 600°C (30min-8h)			1. cleaning: 600°C (30min-8h), cool down to RT, K with 0,02 nm/s for 5min										
metal	temperature / C°	depostion rate/ nm/s	thickness / nm	metal	temperature / C°	depostion rate/ nm/s	thickness /nm							
<i>2</i> . Sb	150	0,1-0,2	10	<i>2</i> . Sb	100 /RT	0,02	8-15							
3. K	140-135	0,5	20	3. K	135-140	0,02	- q.eplateau							
4. Cs	135-110	1	100-150	4. Cs	135-140	0,02	- q.eplateau							

In-situ X-ray diffraction (XRD) monitoring @ BNL:

What happens?

- Sb film is amorphous for the first 4nm (t=700s), then forms a clear crystal pattern [003]
- When K deposition reaches 20 nm (t=3000s) the Sb crystall begins to dissolve, K3Sb begins to form
- A step rise in QE while Cs depostion
- While progressively cubic K2CsSb is build QE rises exponnentially in time
- Cs catalyzes the formation of good crystals, i.e. cathode achieves defined texture [220]

cooking with...

Alvatec V-source:

metal	content [mg]
Sb	400
К	65
Cs	250

5. Temperature of Alvasource®

The temperature of the tube can be estimated by the following correlation which is valid only for standard Alvasources[®] with 3mm diameter.

residual gas analysis

LILLIND

Dycor System 200

09/09/14 12:26:04

Victor Bechthold, PCHB-Meeting 2014 JGU

JGU

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

impressions

Victor Bechthold, PCHB-Meeting 2014 JGU

Status K2CsSb-cathodes and time response measurements

first results

#cathode / recipe	substrate	QE [%]	comment					
2014-07-29 1 Dowell	glass	0,9	(substrate not heated)					
2014-08-07 2 Dowell	Cu	(K: 0,45) 0,1	q.e. plateau reached					
2014-08-28 3 Dowell	Cu	0,05	Cs: 4 min. q.e. dicrease, 8 min increase und final dicrease till the end					
2014-08-29 4 BNL	Poly-Mo	(K: 0,6) 0,05	Cs: continuous q.e. dicrease. short (2min) and small increase after 2 and 8 min					
2014-09-01 5 BNL	Poly-Mo	0,05	Cs: continuous q.e. dicrease, short (2min) and small increase after 2 min					
2014-09-04 6 BNL	Poly-Mo	0,03	Cs: continuous q.e. dicrease for 75min (~30nm)					
2014-09-05 7 BNL	Poly-Mo	-	CsSb cathode, no q.e. increase with Cs					
2014-09-05 8 BNL	Poly-Mo	0,14	KSb cathode, expeted behaviour					
2014-09-10 9 BNL	Cu	(K: 0,7) 0,05	Cs: continuous q.e. dicrease, also with varying dispenser current					
2014-09-16 10 BNL	Poly-Mo	(K: 0,7) 1,8@edge	without above pot, i.e. without online measurement of q.e., 60-70 nm Cs					
Results: Issues: appears to function (almost), but • with Sb/Cs-dispenser ? • with "clean" q.e. measurement • no complete substrate cleaning possible through heating @ >600°C for many hours								

ideas & possible improvements

Before opening & changing all dispensers:

- try another Cs dispenser (SAES)
- (no substrate heating)
- another position for q.e. measurement

Further possible improvements:

- new position for anode
- · larger mask and anode
- new position for mass spectrometer (higher)
- more substrates, e.g. Si (100)
- TSP not yet used → better vacuum
- direct temperature measurement
- baking out the chamber below melting temperature of In (max.150°C)

#cathode / recipe	substrate	QE [%]	Comment
2014-10-10 11 Dowell/BNL	Poly-Mo	(K:0,3)	Cs: continuous q.e. dicrease, main issue seems to be Sb dispenser

- TM110 cavity transforms longitudinal beam profile into a transversal one
- synchronization of electron bunches and RF cavity needed for observation
- resulting intensity disturbation represents the time dependency of electrons in one bunch
- measured by YAG-screen and channeltron

preliminary results

Beam profile on YAG-screen

Intesity disturbation is convolution of transversal beam diameter and pulse response

time response:

→beam halo measurement

further challenges

 time resolution mainly depends on beam size:

 \rightarrow minimize laser spot $\sqrt{d_{laser \, spot}} \sim d_{electron \, beam}$

[E. Kirsch, diploma thesis, JGU Mainz 2014]

Victor Bechthold, PCHB-Meeting 2014 JGU

→minimize beam spot @ slit (new position!), new focusing system?

PCA-cathodes

- carry out possible improvements @ PCA-kitchen
- measurements of time response, lifetime, q.e. chart., spectral analysis etc.

time response / PKAT:

- reinstall and repeat measurements done by E.Kirsch (2013)
- improve time resolution to $t = 2\sigma < 1ps$
- analysis of beam halo at a level of <10⁻⁶ of max. energy after excitation

PCHB-Projekt Overview

Bundesministerium für Bildung und Forschung

- PCHB
 PhotoCathodes for High Brightness, high average current electron beams
- Kollaboration verschiedener Institute
 - Helmholtz-Zentrum Berlin (HZB mit ERL bei BerLinPro), Helmholtz-Zentrum Dresden Rossendorf (HZDR mit ELBE), Johannes Gutenberg-Universität Mainz (JGU), Saint-Petersburg State Polytechnic University (SPSPU), Skobeltsyn Institute of Nuclear Physics Lomonosow Moscow State University (MSU)
- Aufgabenbereich der JGU
 - Messungen der Impulsantworten verschiedener Photokathoden bei 800nm und 400nm anregender Laserwellenlänge
 - K₂CsSb (PCA)
 Sowohl aus eigener Herstellung als auch im Rahmen der Kollaboration mit HZB und HZDR aus deren Herstellung
 - Cs:GaAs
 Verschiedene Typen
 - Ziele
 - Zeitauflösung von 0,5ps
 - Dynamikbereich in der Intensitätsauflösung von 5 Größenordnungen
 - Entwicklung und Inbetriebnahme einer neuen 100keV-Photoemissions-Elektronenquelle
 - Variabler Extraktionsgradient : 1 5MV/m
 - Inverses Design

滃

PCHB-Projekt Overview

Bundesministerium für Bildung und Forschung

- STATUS
- What can be done until summer 2015
- What will we do <u>after</u> summer 2015

PCHB-Projekt

Status

UNIVERSITÄT

Summertime sadness....

- May:source broken, (vented)
- June: repaired, but broken again (vented)
- August : Repaired but...
- Now:Manipulator broken (vent activation chamber)
- -expected to work againg in November
- Measurements promising, objectives for the apparative parameters almost reached
- Measurements neither reproduced nor completed, let alone being published
- PCA cathodes may become available, at least Kalium cathode is almost certain.
- minimum Goal: Monika, Victor do experiment with K (?:KCsSb, GaAs) and publish.
- \rightarrow Variable gradient source must be deprioritized to allow for measurements
- \rightarrow probably not be available before end of project in summer 2015.

Additional logistic problem: TLS experiment not yet finished.

Whats next?

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

..promises ultra high time resolution ! ..but we plan only Demonstation experiment

The problem for TLS is the low peak current in the 20 ns long pulse of Tobias Experiment (~50-100mA). The new ,HOPE' source should give up to five Amperes. High peak current allows for longitudinal TLS

Sub ps LTLS

Bundesministerium für Bildung und Forschung

