Numerical Optimization

Contents
1 Principle
2 Directories

3 7 Steps to the Optimization
3.1 Step 1: Necessary Files.
3.2 Step 2: Standard Instrument
3.3 Step 3: Optimization Parameters
3.4 Step 4: Control of the Simulation
3.5 Step 5: The Figure of Merit
3.6 Step 6: Control of the optimization routine
3.7 Step7: Run
3.8 Output

4 Algorithms
4.1 Gradient methods: opt_grad and opt_gradmc
4.2 Metropolis algorithm
4.3 Swarm algorithm oo

5 Optimization on a computer cluster

6 Fitting

12
13

16

17

1 Principle

The combination of Monte Carlo simulations and optimization is realized
in a way that the optimization routine is the main program and calls the
simulation in a subroutine called ExtFunctions() (see Fig. 1)!.

This procedure first writes a file Pcomm.dat containing one or more
parameter sets. The tool gener_pipe.exe? reads these sets and combines
them with the standard instrument (saved as std_instr.cmd), thus generating
the VITESS pipe commands (in a shell or batch script) for all simulations
to perform.

The simulations are then started and the files (of all simulations) that are
needed for the figure of merit are copied. The next step is to start a program
to calculate the figures-of-merit (for all simulations) and write them into a
file Fcomm.dat. Now this/these figure(s)-of-merit are read and returned to
the optimization program. This will suggest (a) new parameter set(s) and
call ExtFunctions again. This procedure continues until the optimization
has come to an end.

The optimization is widely controlled by the 3 ASCII input files fom.ins,
opt_param.ini and sim_param.ini plus an ASCII control file for the opti-
mization algorithm used (e.g. swarm.ini). If there is a one-to-one relation
between optimization and simulation parameters and the figure of merit is
one of the many options of the delivered fom program, no code or script is
necessary for the optimization.

The optimization routines can also be used for fitting (see section 6).

oy — [

opt_grad.ini /—,

swarm.ini _.| swarm algorithm |

sim_param.ini,

Figure 1: Scheme of optimization

'In the code, ExtFunctions has been renamed in VITESS version 3.2 with introduction
of the cluster parallelization to OptFctPc and OptFctGrid.

*Windows: gener_pipe.exe, Linux (64 bit): gener_pipe Linux x86_64, Macintosh (64
bit): gener_pipe Darwin x86_64

2 Directories

The directory “...VitessX.Y/MODULES” where the executables are will be
called the module directory. The directory “...VitessX.Y/OPTIMIZATON”
contains all necessary input files for the optimization.

You can run the optimization here or choose a different folder. This will
be called optimization directory.

The simulations generally run in a different directory. This can be the
directory where the instrument has been developed or another one. This
will be called simulation directory.

3 7 Steps to the Optimization

3.1 Step 1: Necessary Files

The executable opt_sim has be copied from the module directory to the
optimization directory. If an optimization directory different from
...VitessX.Y/OPTIMIZATON is chosen, all .ini files have to be copied from
there to optimization directory. If you choose a simulation directory that is
not the original directory, you have to copy all input files there.

3.2 Step 2: Standard Instrument

The first step is to develop an instrument that can be used as a starting point
for the optimization. Make sure that the simulation runs properly and that
an adequate number of trajectories is chosen; at least 100000 trajectories
should contribute to the figure of merit, i.e. have to be summed up in the
file used to calculate the figure of merit.

When it is finished it needs to be saved by clicking “Check” and sav-
ing the shown output without any change by using the “Save” button
(belonging to the output window) as std_instr.cmd to the optimization
directory (!!!). Note that this command file cannot be used for an opti-
mization on another platform (e.g. saved under Windows and used under
Unix), and that it has to be left in this format!!! (Of course editing this
file, e.g. changing the number of trajectories, is possible.)

Now the different .ini-files have to be filled. Note that anything behind
a #-symbol is regarded as a comment and ignored by the program.

3.3 Step 3: Optimization Parameters

In the file opt_param.ini you have to give

1. the name of the optimization

2. a code word to define the optimization algorithm
existing at the moment : "opt_grad”, ”opt_grad_mc”, "metropolis” ,
"swarm” (see section 4 “Algorithms”)

3. option for local (“sim_opt_pc”) or cluster (“sim_opt_grid”) usage. See
section 5 for optimization on a cluster.

4. name of figure of merit binary
5. cluster options; set “none” for local usage

6. all input variables in the form

index (starting with 1)
e initial value

e minimal value

e maximal value

e difference to the actual value for the calculation of the gradient
or the next tested value

Notes:

¢ Not all algorithms will need all information about the parameters or
can treat them, but for the sake of simplicity this needs to be given
for all of them.

¢ Input lines must not be removed and their order has to be kept.

¢ For gradient methods, the difference “delta” should be only a fraction
of the expected value to calculate the differential quotient (for the
actual value). For other methods this limits the step width to the
next position and should therefore be in the order of magnitude of the
value or a bit smaller.

3.4 Step 4: Control of the Simulation

The first two lines in sim_param.ini define the directory where the executa-
bles can be found (and thus the Vitess version) - line 1 - and the simulation
directory (cf. section 2 “Directories”) - line 2 (see example files in figure 3).
STD means that the path to this directory is taken from the standard in-
strument file std_instr.cmd. The third line defines the file(s) necessary to
calculate the figure of merit (see example files in figure 4, cf. Step 5).

The next line of this file defines the function calculating the simulation
parameters S;, from the optimization parameters P;. STD defines a direct
assignment: S1 = P;, Sy = P, etc. In the future, simple mathematical

File Edit Options Buffers Tools Conf Help

[eEXaEosxsabhag@(E
| Optimisation of the sample position # name of the optimization
#
metropolis # agorithm existing: ‘opt_grad_mc', ‘metropolis’, 'opt_grad', ‘swarm
sim opt pc # application option existing: 'sim opt pc', 'sim opt grid' (used for MC simulations), 'fit pc' (to be used for fitting)
fom # program to calculate figure of merit (will be maximized)
none # cluster option 'mone’ for no option, '--node=long' (SGE) or '--slpartition=long' (SLURM) for long queue
#
parameters
start min max delta description
1 2.0 -16.08 18.8 0.05 # P1: hor. shift [cm]
= 2.0 -16.0 10.0 0.05 # P2: vert. shift [em]

(a) example using metropolis algorithm

File Edit Options Buffers Tools Conf Help

[eEx . S2eAs®E

Optimisation of the sample position # name of the optimization

#

opt_grad mc # algorithm existing: ‘opt grad mc', 'metropolis’, 'opt grad', 'swarm'

sim opt_pc # application option existing: 'sim ept pc’, 'sim opt grid' (used for MC simulations), 'fit pc’ (to be used for fitting)
fon # program to calculate figure of merit (will be maximized)

none # cluster option 'none’' for no option, '--node=long' (SGE) or *--slpartition=long' (SLURM) for long queue
#

parameters

start min max delta description

1 2.0 -10.8 10.0 .05 # Pl: hor. shift [em]

i 2.0 -10.8 18.6 ©.05 # P2: vert. shift len]

(b) example using opt_grad-mc algorithm

Figure 2: Examples of file opt_param.ini setting optimization algorithm and
parameters to be optimized

| sim_paramiini - Editor =)

Datei Bearbeiten Format Ansicht 2

-
STD # directory of VITESS executables STD: directory from 'std_instr.cmd [
STD # simulation directory (during optimization) STD: directory from 'std_instr.cmd

#

sample.mt] # files to be copied for 'FigureofMerit'

STD # defines function to transfer optimization parameters to simulation parameters =
#

SimPar FitPar

6 -y # = hor. shift [cm]

6 -z # vert. shift [cm] i
B e e 1
« 1l »

(a) example using default settings
| sim_param.ni - Editor =N)

Datei Bearbeiten Format Ansicht 2
#

STD # directory of VITESS executable STD: directory from 'std_instr.cmd
N:/Vitessopt/FitSimulation/Test2 # simulation directory (during opnmzanon)

sample.mt1 # files to be copied for 'Figureofierit’
MTRO2 # defines function to transfer optimization parameters to simulation parameters

SimPar FitPar
4 -w 5 PL

#51 = exit width [cm]
4 -H #52=0P2 exit height
4 -f #53 =Pp3¥100 hor. focusing point [cm]
4 -F # 54 = P4¥100 vert. focusing point [cm]

(b) example using the function DetSimParamMtr and a different simula-
tion directory

Figure 3: Examples of file sim_param.ini defining the variable simulation
parameters and the function transferring the optimization parameters to
simulation parameters

operations between these parameters can be defined in the way indicated
in the file. For the time being, only this direct assignment is possible,
everything else has to be realized by extending the program gener pipe
- see below.

In the next lines, all simulation parameters affected by the optimization
parameters are listed (see files in figure 3). They are characterized by the
module number and the symbol (like “-H”) defining the parameter (within
the list of existing parameters of this module). The symbol is shown if you
click on the text belonging to this item.

In order to calculate simulation parameters from optimization parame-
ters, a function similar to DetSimParamStd () has to be written in gener_pipe.c3,
which performs this calculation. The easiest and safest way is the following:
copy, rename and change DetSimParamStd(). Then add 3 lines of code in
the if...else if...else command identifying this function by code that will then
be given in sim_param.ini instead of STD.

Example: Adding
else if (strcmp(sParFct, "MTR02")==0)
{ DetSimParamMtr (P, m, nSimParNo, nFitParNo, 2);

}

assigns that the function DetSimParamMtr () with additional parame-
ter iFirstMPar=2 is called. It transfers the optimization parameters to
simulation parameters, if the code “MTR02” is given in the fourth line of
stm_param.ini. (This has in fact been realized for the optimization of the
elliptical guide exit of the EXED instrument, cf. file in figure 3(b). MTR
denotes the change from meter to cm and 02 indicates for which simulation
parameters this is applied.)

3.5 Step 5: The Figure of Merit

The next step is to assess the figure of merit. The function ExtFunctions ()
in calc_sim_fom.c will call the program fom; this writes the file Fcomm.dat.
It is an ASCII file containing just one number for each simulation to be
executed. In case of NV simulations, these N numbers are written in N rows.
The files defined in sim_param.ini - in this example sample.mtl - serve as
a data basis for these calculations.

In the future, using user defined programs will be made easier. In the
present version, it has to be called fom (plus extension) and be written
to the folder MODULES replacing the existing program, or the name in
ExtFunctions() has to be changed and opt_sim re-compiled.

fom is delivered with the package. It is controlled via fom.ini. The
general formulae are

3The file gener_pipe.c is in the SRC directory. Don’t forget to recompile after adding
your function. Copy the new executable to the MODULES directory and add the appro-
priate extension (.exe or _Linux_x86_64 etc).

| fom.ini - Editor = B0
Datei Bearbeiten Format Ansicht ?
A= 0 # criterion: sum (A=0) or average (A=1)
1= 0.0 # Sum\Average(Weight * I_sig/I_refAm * LambdaAl)
m= 0.0 # FOM = —---—---mmmm oo
n= 0.0 # __Sum\Average(I_noise)An
f= 1.0e+09 # normalization factor for output value: f/FoM
S=sample.mtl # signal file for 'FigureofMerit' (from simulation)
R=no_file # reference file (from simulation)
N=no_file # noise file (from simulation)
w=no_file # weight file (from user)
»
Figure 4: File fom.ini to define the figure of merit
'wilsign,i)\,li
P v
i ref,i
FoM = ‘"
— “notse,t
7
or

<wi]sign,i)\é >
—Im.
FoM = ~——=k~

<I7TLLoise,i>

where the parameter A defines if sums (A=0) or averages (A=1) are
used. The numbers for the powers [,m.n have to be given; they can be float
values. The files containing signal, noise, reference and weight have to be
given. If they are output files of the simulations, they have to be listed in
sim.ini as well. If a weighting with wavelength shall be used, the intensity
files have to be intensities as a function of wavelength.

As the optimization routine searches for the minimum, the value f/FoM
is written to Pcomm.dat. The factor f is also read from fom.ini and allows
setting output values to the order of magnitude 1, which is an advantage (in
terms of numerical precision) for some optimization algorithms.

In the example shown in figure 4, the figure of merit is reduced to

FoM = Lign,
thus optimizing the integrated flux (in a slit).
Example: If the transmission averaged over a wavelength range shall be
optimized, the parameters have to be set as: A=1; m=1; [=n=0 and the
reference file (=input of the section, whose transmission is regarded) has to
be given in addition to the signal file.
3.6 Step 6: Control of the optimization routine

The optimization process is controlled by the file opt_name.ini, i.e. each
algorithm has a control file of its own. Useful default parameters are de-

| opt_grad_mcini - Editor =8

Datei Bearbeiten Format Ansicht 2

a= 2 # eOut : output control (1: only final result, 2: parameters in each step, 3: function values)
5=25 # mSteps: max. number of optimization steps

mDamps: max. number of dampings

#TD : initial factor t in opt. step size betw. 1lin. and real fct.

S
i

-

o

5
5 # Damp : damping factor (reduction of t
333 # Tfac : fraction Q-reduction in original and 1inearized fct.

000 # Querm : ratio of Q-reduction within 1 step that stops the optimization
0E-24 # Qmin : Q-value to stop the optimization

8 # RDelpP: reductionf factor of DelP in case of deterior. in both dir.

IS =11

. ®mE=- oo
NN

Figure 5: File opt_grad_mc.ini controlling a gradient method adapted to
Monte Carlo simulations

livered so that often no changes are necessary for the two gradient and the
metropolis algorithms. When using the swarm algorithm, adjusting these
parameters to the optimization problem at hand is advisable. The algo-
rithms and their respective steering parameters aqre described in detail in
section 4.

3.7 Step 7: Run

Now the optimization can be run by starting the program opt_sim in the
optimization directory.

3.8 Output

A log file Opt.log of the optimization is written to the optimization direc-
tory. It contains the initial and final parameter values and (depending on
the algorithm) all or some of the parameters sets in between as well as the
figures of merit for these parameter sets. Additionally, log files Sim0.log,
Sim1.log... for the different simulations of the last optimization step can be
found in the simulation directory. Finally, the files contributing to the figure
of merit are copied. So those files obtained in the final optimization step
still exist.

4 Algorithms

In VITESS version 3.1, three algorithms are available, others follow in up-
coming versions: a usual and an adapted gradient method as well as a
metropolis algorithm. In version 3.2, a swarm algorithm has been added.
The usual gradient method chosen by opt_grad was developed for fitting
and works there very well in practically all cases. It has been changed to
allow for the statistical effects in combination with Monte Carlo simulations.
This adapted gradient method is used when choosing opt_grad mc. Both
gradient methods work best if the parameters are all in a similar order of
magnitude and especially not larger than 10%. The gradient is determined

numerically varying one parameter in both direction and calculating the dif-
ferential quotient. Care should be taken in defining the parameter variation:
it should not be too large to get a good estimation of the gradient for this
parameter value, but especially not too small to avoid zero difference and
a statistically induced false estimation. opt_grad mc allows setting minimal
and maximal value for a parameter, but the optimization runs better if this
option is not used. Generally, gradient methods work well with Monte Carlo
simulations, if a sufficient number of events - ideally up to 10% - contribute
to the figure of merit.

The Metropolis algorithm is used if metropolis is chosen. The risk of
finding a local instead the global optimum is reduced by using the metropolis
algorithm; but it needs by far more simulations, at least 1000 steps. On the
other hand, it allows getting an estimate of the width of the local optimum
by calculating centre and variance over the path in the local optimum.

A particle swarm optimization is used if swarm is chosen in opt_param.ini.
In this case, more than one simulation is run for different sets of trial param-
eters in each optimization step (the number is set in swarm.ini, see section
swarm algorithm), so setting a good starting point is not important. No gra-
dient is used, so the optimization problem does not have to be differentiable
but there is also no guarantee that an optimal solution is found.

All optimization algorithms implemented in Vitess 3.2 are described in
more detail in the following.

4.1 Gradient methods: opt_grad and opt_grad mc

The gradient methods use the partial derivatives to determine the direction
towards the expected optimum: The Matrix N of partial derivatives at
position PO = (P0y, ..., P0,) is calculated as

_o0f of
%, 8Pz 8Pj)
The figure of merit FoM is delivered by the executable fom.exe by evalu-
ating output data of the MC simulation.

The Matrix N is calculated by numerical variation of the parameter
set P, i.e. the function f is calculated for (p1 + 0p1,p2,p3,.--Pn), (P1 —
dp1,p2, --Pn)s (1,02 + 0p2y...pn) ... (P1,Pp2,Pnx — Opy). Values for dp; are
taken from opt_param.ini.

For a linear function, the vector to the optimum can be directly calcu-
lated as

with f = FoM ™! . (1)

AP =N7I7 (2)
with)
T = *§VQ 5

where @ is the so-called quality factor defined as Q := 1/FoM?.

The new parameter set P1 = PO+ AP is tested for the (usually nonlin-
ear) function under consideration. It is accepted, if the improvement in the
quality factor @)

AQ = Q(P1) — Q(P0)

is at least a fraction 'T fac’ (control parameter ’t’) of the value AQy;, cal-
culated for the linear function:

|AQ‘ < Tfac : ’AQl'm’ .

If this is not the case, the direction of change from PO is kept, but the step
width is reduced by a factor 'Damp’ (control parameter 'd’), i.e.

ﬁzﬁO-&—Damz%Aﬁ

and the comparison between @) of linear and real function is performed again.
This is repeated in a loop until the criterion is fulfilled. This procedure
avoids jumping back and forth over the optimum [1]. Values of T, between
0.3 and 0.5 are recommended, lower values allow this jumping, higher values
restrict the step size. Finding a new value for P is regarded as one step.
The algorithm searches for a minimum of Q.

The optimization stops if

e (is below ’Qmin’ (control parameter 'm’)

e the improvement in one step is less than given by ’Querm’ (control
parameter 'r’)

e the maximal number of dampings 'mDamps’ has been executed (con-
trol parameter 'n’)

e the maximal number of optimization steps 'mStep’ has been executed
(control parameter ’s’)

The parameter ’a’ controls the output:
e a=1 means that only the parameter set of the final result is written.
e with a=2 (default) the actual parameter set is written in every step.

e with a=3 even more information is written to the output file, which
might help to find bugs if the optimization does not work.

As can be seen from equation (1) and (2), the algorithm includes a matrix
inversion, which fails if

e the dependence on one parameter is zero

10

e values of 0f/0P; are many orders of magnitude from 1

Generally, the optimization works best, if all values of P; and 0f/0P; are
close to the order of magnitude 1.

The usual gradient method selected by 'opt_grad’ does not consider the
parameter range given in opt_param.ini. In contrast, the algorithm selected
by ’opt_grad_mc’ does, but optimization runs better if it is not used.

The former one is meant for fitting (see section 6), the latter one for
combination with Monte Carlo (MC) simulations. The statistical nature of
these simulations creates a rough surface, which complicates optimization:
A parameter set that is closer to the real optimum may yield a worse figure
of merit, because accidentally less 'good events’ are chosen. The effect is di-
minished by chosing a large number of events - ideally 1 million events should
contribute to the figure of merit - but as simulations often take much time,
there is a limit to increassing the number of events. Therefore, ’opt_grad mc
contains some features to adapt the method to the conditions found in MC
simulations:

e As the step width is often overestimated, it can be reduced by a factor
'TDO’ already before the first test (control parameter 'D’)

e if (p1,p; — 0ps,...pn) and (p1, p; + pi, ...pn) do not give the same infor-
mation about the gradient, this parameter remains unchanged

e if the variation of parameter ¢ leads to a worse result in both directions,
the variation dp; is reduced by a factor "RDelP’ (control parameter
7R7)

11

4.2 Metropolis algorithm

The metropolis algorithm is a random walk through parameter space to
find the optimal parameter set [2]. The step AP from the actual position
PO to the next possible position

P=P0+AP

is determined by a Monte Carlo choice, where one parameter is changed.
The range in which P is varied is defined by the values ’delta’ (for each
parameter) taken from opt_param.ini:

—(5]' < AP]‘ <(5j .

P is accepted as the new position if it is an improvement in the quality
factor @, i.e. if

Q(P) < Q(P0)

but there is also a chance that it is accepted in case of worsening. The
probability is

(-=4)
p = e\

_Q%-Q3
6 [ea

with @ := Q(P), Qo := Q(P0)

This gives the chance to traverse a local minimum and and find the absolute
minimum. Q is defined as Q := 1/FoM?, and FoM is delivered by the
executable fom.exe by evaluating output data of the MC simulation. o
has to be chosen properly to get a realistic probability to get out of a local
minimum.

The parameter 'n’ gives the number of new positions tested in 1 step.
The description above described the default case n = 1. If a number larger
than 1 is chosen, the best of all new possible positions is chosen as the possi-
ble position. This option was added to take advantage of parallel computing,
but it alters the optimizations process.

The parameter range can be restricted (control parameter ¢ = 1). The
range of each parameter has to be defined in opt_param.ini. For ¢ = 0, these
values are ignored.

Each attempt to find a new parameter set P is one step. The opti-
mization stops after 'mSteps’ steps (control parameter ’s’) or if @ is below
'Qmin’ (control parameter 'm’).

The actual and the best parameter are saved. The best parameter set
szst is updated, if the error square sum of the new parameter set is less
than ’Querm’ (control parameter 'r’) of the previously best.

12

Apart from searching for the best parameter setting, it is also possible
to obtain average values of the random around a minimum. When the Q-
value falls below 'Qlimit’ (defined by control parameter I’), the parameter
averages are calculated as a weighted average using the weight

Pi = Quimit — Qi

until @ exceeds 'Qlimit’ again.
The parameter 'a’ controls the output:

e a=1 means that only the parameter set of the final result is written.

e With a=2 (default) the actual parameter set is written every 'nStpOut’
steps (given by control parameter ’'o’) additionally the best parame-
ter found so far is written every 'nStpMin’ steps (given by control
parameter 'd’)

e Using a=3 even more information is written to the output file, which
might help to find bugs if the optimization does not work.

4.3 Swarm algorithm

The particle swarm optimization (PSO) method is an attemp to model
swarm intelligence: a population of individuals searches the parameter space
such that the movement of each individual is influenced by both the per-
sonal best value found so far (local best, cognitive component) as well as by
the best value found by the entire swarm (global best, social component).
This movement is described by a “velocity” v specifying the change of a
parameter p between two optimization steps ¢ and ¢ + 1:

Vig1 = wov; + wim1(Plocal Best — Pi) + war2(Pglobal Best — Di) (3)
Di+1 = DPi+ Vi1 (4)

where wp is known as inertia weight, w2 as acceleration coefficients and
71,2 are random numbers in the range [0,1]. Typical values are wg =0.9 and
w] = wy =2.

The implemetation used in VITESS follows the time-varying acceleration
coefficients method (TVAC) described in [3]. The weights wg 12 of the
three terms in (3) are linearly varied during the optimization process to
ensure sufficient exploration of the parameters space in the beginning of the

13

optimization as well as a sufficiently fast convergence towards the end:

mazxr __
N ')

woi = (W™ —wp™) Nmaz + Wy (5)
it
wip = (O W) s W (6)
Nii
wo; = (wh — W) Az + Wi (7)
it

where i is the current iteration and N;}'** the maximal number of optimiza-
tion steps (input variable nSteps, see below). The default values used in
VITESS for minimal and maximal coefficients are those which have been
reported as optimal in the literature ([3] and references therein):
W= (0.4,0.9), WM =(0.5,2.5), wy M =(0.5,2.5).
This time dependence can of course be switched off by simply setting wg””{"z =
Wo,1,2-

The starting values of the parameters and velocities are set by random
numbers within the parameter range and step size defined by the user (in
opt_param.ini):

Po = random [pmin7 pmaa:]

vo = random[—Ap, Ap]

The starting parameters of one swarm individual are set to the user-defined
starting values.

During optimization, the maximum possible verlocity is set to |v; maz| =
0.5|Pmaz — Pmin|. If the calculated velocity or parameter position exceeds its
limit, it is set t0 £Vmaz OT Pmin,maz, respectively.

The optimization ends if either the maximum number of iterations is
reached, or the figure of merit is not being improved for a certain number
of iterations.

The PSO method is thus steered by the following parameters (in swarm.ini):

nBees The number of swarm individuals. Note that in each optimization
step, nBees simulations are started.

nSteps The maximal number of optimization steps (N/}'* in eqn. (5)-(7)).
Note that a large nSteps leads to a slow change of the weights wq 1 2.
If nSteps is chosen too small (using the default min./max. weights),
the swarm will quickly cluster around the global best value and might
get trapped in a local optimum.

nFinish The maximum number of optimization steps without further im-
provement.

w0_min Minimal value of the inertia weight.

14

w0_max Maximal value of the inertia weight.
wl_min Minimal value of the local weight
wl_max Maximal value of the local weight
w2_min Minimal value of the global weight
w2_max Maximal value of the global weight

eOut Output level:
(1) standard output,
(2) each new global best parameter set written to log-file, additional file
Swarm_GlobalBest Values.dat written containing a list of global best
values in each optimization step (iteration, fitness, pl...pN)
(3) DEBUG mode: position and velocity of every individual at every
optimization step written to log file, additional file
Swarm_BeeMovement_Parameter!.dat containing values of first opti-
mization parameter for each swarm individual (columns) in each opti-
mization step (rows)

The relative size of the weight parameters determines how quickly the
swarm converges towards the global maximum value*. The default values
are chosen such that exploration of the parameter space is dominant in the
beginning of the optimization and convergence to the global best value is
enhanced towards the end of the optimization.

The effects of these parameters are illustrated in figures 6 and 7, which
show the movement of 5 swarm individuals in one parameter dimension dur-
ing the optimization. The optimization example used here is the simple case
of finding the optimal position of a pinhole in the focal plane of an elliptic
guide. Obviously, the solution is the focal point, which is at (y,z)=(0,0).
Only the y-position is shown in the plots.

Figure 6 compares the swarm behaviour for weights fixed (i.e. Wiy =
Wpmae) at their initial (a) and final (b) default values. In the first case,
swarm individuals are seen to oscillate around the individual best values
with a large amplitude, covering the whole parameter range. In the latter
case in which the global weight is largest, the oscillation is damped and the
swarm converges quickly.

The weights are varied between their respective default minimum and
maximum values in figure 7. However, the swarm individuals do not con-
verge in figure 6(a) because the maximum number of optimization steps is
chosen too large for the simple problem at hand, hence the weights are still
close to their initial values when the finishing condition (no improvement
for nFinish steps) is met.

4Note that this definition of conversion is not equal to the global best value converging
towards the true optimum value.

15

‘qa)_' 2; T \/\ T T T T E E 2-55 E
I N | B 1 S
S\ \ e v | A e I
PR AL AAD
T VIV T T
s AT WSO TNV
asbo N W XA _ 3
NWCAA
'2’55"é"‘lx‘“é“‘é“v‘fo‘”1‘2“‘1sz‘\“‘1‘6”‘1‘3“‘2\£”£ R e T T T
(a) w0 =0.9, wl =2.5, w2 =0.5 (b) w0 =0.4, wl =0.5, w2 =2.5

Figure 6: Movement of 5 swarm individuals in one parameter dimension
with weight parameters fixed to initial (a) or final (b) default values. The
optimization problem has been slightly modified here to create artificial local
maxima at £1cm (by a filter).

a SET = 5g T T
5 4 5 4 E
R - 3
g e o E
= o S o - ——
1 & 5

2 2 E

3F 3E E

aE aE .

,5: ,5: 1 1 1 1 1 1 1 1 1 L3

2 4 6 8 10 12 14 16 18 20
optimization step optimization step
(a) nSteps 50 (b) nSteps 20

Figure 7: Movement of 5 swarm individuals in one parameter dimension
with time varying weight parameters and nF'inish = 10.

5 Optimization on a computer cluster

Since VITESS version 3.2, the optimization can be done on a computer
cluster instead of the local computer by setting the “application option”
in opt_param.ini from ’sim_opt_pc’ to ’sim_opt_grid’. Instead of writing and
running Simulations.sh, the optimization routine then uses gridrun to start
VITESS simulations on worker nodes of a computer cluster. In case of the
swarm algorithm, a simulation job for each swarm individual is sent simul-
taneously to the cluster in every optimization step, i.e. nBees subjobs run
in parallel. In case the metropolis algorithm is used, the number of sim-
ulations running parallel on the cluster equals the number of parameters
to be changed simultaneously, i.e. nT'stPar. In case of the gradient meth-
ods, the number of simulations running in parallel is two times the number
of parameters. A further splitting of the simulations is not supported in
VITESS 3.2! This will lead to errors because the simulation results of these

16

subjobs would have to be merged in a separate step, which is currently not
implemented.

The queue or worker nodes of te cluster can be specified as “cluster
option” in opt_param.ini:

e On a cluster using SGE®, --node=1ong will send the simulations to
the long queue

e On a cluster using SLURM®, --slpartition=long will send the sim-
ulations to the long queue

In both cases, ~—-name=MyJobName can be used to name the cluster job.
Examples of opt_param.ini for a local optimization and one on a cluster
using SGE are shown in figure 8.

File Edit Options Buffers Tools Conf Help
[EExXx i xZBbAas@E
optimisation of the sample position # name of the optimization
#
opt_grad_mc # algorithm existing: 'opt_grad_mc', 'metropolis’', 'opt_grad’, 'swarm’
sim opt_pc # application option existing: 'sim opt pc', 'sim opt grid' (used for MC simulations), 'fit pc' (to be used for fitting)
fon # program to calculate figure of merit (will be maximized)
none # cluster option "none’ for no option, '--node=long' (SGE) or '--slpartition=long' (SLURM) for long queue
#
parameters
start min max delta description
1 2.8 -18.6 18.0 ©.85 # P1: hor. shift [cm]
2 2.0 -10.0 le.0 @.e5 # P2: vert. shift [cm]

(a) local option

File Edit Options Buffers Tools Conf Help

LmExzgEossbans®E

Optimisation of the sample position # name of the optimization
#
swarm # algorithm existing: ‘opt _grad mc', ‘metropolis', 'opt_grad’, 'swarm'
sim opt_grid # application option existing: 'sim opt pc', 'sim opt grid’' (used for MC simulations), 'fit pc' (to be used for fitting
fom # program to calculate figure of merit (will be maximized)
ode=long # cluster option ‘none’ for no eption, '--node=long' (SGE) or ‘--slpartition=long' (SLURM) for long queue
#
+# parameters
start min max delta description
1 2.0 -10.6 10.0 .85 # Pl: hor. shift tem]
2 2.8 -18.0 18.8 0.85 # P2: vert. shift [en]

(b) cluster option, using the long queue

Figure 8: In opt_param.ini, the parameters for running on the local computer
(a) or running on a computer cluster (b) are defined.

6 Fitting

The gradient and metropolis optimization routines can also be used for
fitting. The quality factor) then becomes the error square sum:

Npts

5tested on the HZB cluster dirac
Stested on the ESS cluster

17

1y; is the measuring value at point x;, w; is the weighting factor of this
data point. =z, y and w values are read from file in the main program
(parameter -Dfilename). The first column is regarded as z-value, the second
as corresponding y-value. If there is a third column, it is interpreted as
weight. Otherwise the weight is set to 1 for all points.

The function f depends on the parameter set P and calculates values
for all z;, which are compared with y;. It has to written by the user in the
form

short FitFctPc(double F[IMAX+1], const double X[IMAX+1], const double
P[NMAX+1], const int nPts, const short nP)

with
F : function corresponding to parameter set P
X : parameter Xi...Xs (e.g. wavelength)
P : parameter set, for which the fct is calculated
nPts: number of points in spectrum (Np)
nP : number of parameters in a parameter set (Pj...P,)
return: TRUE/FALSE
In the metropolis algorithm, the probability for acceptance becomes
now
(25
p=ce Nptso?

with Ny being the number of measuring points and o the standard devia-
tion of a measuring value.

18

References

[1] D. Braess. Uber Dampfung bei Minimalisierungsverfahren. Computing,
1(3):264-272, 1966. ISSN 0010-485X.

[2] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. Equation of State Calculations
by Fast Computing Machines. The Journal of Chemical Physics, 21(6):
1087-1092, 1953.

[3] A. Ratnaweera, S. Halgamuge, and H.C. Watson. Self-organizing hier-
archical particle swarm optimizer with time-varying acceleration coeffi-
cients. Evolutionary Computation, IEEE Transactions on, 8(3):240-255,
2004.

19

