Software Technique in VITESS

Michael Fromme
FM-D
Helmholtz-Zentrum Berlin

This report is an updated and more verbose treatment on VITESS software technique taken from a contribution to the
2001 workshop at HMI and updated to news of version 3.2 in 2013.

VITESS Software

First we learn about the building blocks of VITESS and it's design principles. Then we get to know features of the
VITESS graphical user interface and how to use them for new modules. Existing software tools are best used if you stick
to some conventions.

To make things clear we then examine step by step how to integrate a new simulation module in a one-shows-all
program example.

VITESS Building Blocks

Piped Commands

The most basic thing for VITESS programs from the beginning was that modules represent parts of the chain, from
neutron source to moderators and guides up to detectors, as single programs which communicate by means of pipes,
where output data of one module, representing the neutron samples, are the input of the next module.

This makes modules fairly simple. They only have to agree on the data format for neutrons in the pipe, and could be
parametrised by very individual means. In practice we have command options and parameter files to let modules know

what to do.

Parameters as Command Arguments

In the course of development it proved fruitful to have some common parameter passing syntax. Because we had no
module with more than 26 parameters then it seemed sufficient to reserve a single letter for command options, and to put
the adjunct argument right after with no space in between like

-PXXX

where p is the single option letter, and xxx is a placeholder for an arbitrary argument.

Some parameters are valid for all modules, are shown to all modules, they have the form

--Pddd

like here for the default parameter directory.

This is not standard for command shells, but easy to parse.

Users are not confronted by hundreds of parameters on a single command line, but use the Graphical User Interface
(GUI) to generate commands with the appropriate options.

VITESS Design Principles

Multi Platform Support

You need just a C compiler like GNU gec and Tcl/TK support for your computer and operating system, which means it
is easy to compile and adjust VITESS for Microsoft Windows and most Unix variants. As for now VITESS is ready to
be used with MS Windows, Linux (32 and 64 bit systems) and MacOS. It has been used with Solaris and Tru64, too.

Easy Integration of nhew Simulation Modules

You may contribute own modules very easily. If your module knows how to read from standard input and write to
standard output, that's all you need to use it as an external module. For tighter integration to the GUI you just enter some

lines of Tcl code, and you will learn here where and why.

24/10/13 1

Consistency of Parameters

With the Tcl/TK GUI you have the glue to operate your module, that is to check the consistency of parameters, control
the execution of the overall pipe, save and restore parameter settings, and even visualise the output.

Features of the VITESS GUI

Parameters

It's up to the GUI part to provide defaults for parameters. They may be range-checked and more complex cross checks
may be done here.

By now parameters are mostly of two sorts: Those which are entered and shown with the module on the main VITESS
module window and those which are put aside to text parameter files. The latter are for parameters which are changed
more seldom. Your C-programs read those directly, but you may edit those text files by means of the GUI, where
parameter checking may be achieved easily.

Of course you may browse these files in the Windows fashion.

Default Parameter Directory

Because it was too easy to mix up parameter files for different simulation runs, the GUI supports the use of a default
parameter directory. Modules see a parameter --PD:\Vitess\Test and then should read and write files relative to this
directory. The GUI cares to copy files of other origin to this directory if necessary.

Save and Restore Settings

VITESS saves all settings under direct control to .gui files. Later you may restore these settings.

You may save by the file menu, or you are asked to save if you want to load new settings or leave VITESS, and have
unsaved settings.

For simulation series which need no manual interaction, you may store simulation series to .tcl files where specially
selected parameters are varied.

Controlled Execution

Simulation pipes are started by means of the GUI, which gathers and checks parameters to be transformed to a lengthy
Tcl command string. The started module processes are monitored then and their activity is shown. If all modules have
finished, their non-pipe output, which has been directed to temporary files, becomes shown in the output window.

You may stop or kill the command pipe at any time. To stop the pipe means to send signals to all modules to end
computation. If modules are prepared for this signal, they cease execution at reasonable points and prepare their final
statistics as if the stream of input neutron samples from the pipe has ceased. If this soft abort fails for some reason,
processes may be killed terminally.

Click for Help

To get information on parameters (meaning, valid input,..) you may just click on the parameter label. Of course you may
search for these descriptions. Description also comes with HTML files for modules, where your browser gets a call
when you select help from module menus.

Logging

The merged output of the VITESS GUI and the non-pipe output of modules is shown in the output window and is
copied to a log file, the date being part of the file name.

24/10/13 2

Software Tools

CIC++ Compiler

We chose GNU gcc for Unix binaries and Microsoft Visual C++ to compile Windows executables. Makefiles for both
compilers are output of a Perl script mmake. pl , which contains all information on module dependencies.

Modules may be from other computer languages, as long they stick to the binary format of neutrons in the pipe, and
know how to process arguments.

For C/C++ this is much easier, because common definitions and tool routines may be used.

TclITK

Tcl is an open source multi-platform programming shell, abstracting features of the operating system.

TK brings in X-Windows and the MS Windows GUI or Aqua on Macs. VITESS works with Tcl/TK version 8.5
without extensions, and we decided to do spectrum plots with gnuplot. We use plain Tcl/TK, without any own C-
extension.

Because most Unix deviates have Tcl/TK and gnuplot installed, we distribute VITESS without this base, but for
Windows we add the Scriptics compilation plus a working version of gnuplot. Of course this is not part of the VITESS
software, and you might choose to use other or newer distributions of Tcl/TK or gnuplot.

VITESS Conventions

Code, sources and documentation are put to specific subdirectories under the chosen installation.

Installation Directory

the path must not contain names with blanks, do not use C: \ Program Fi | es.

install _*.txt tells how to install VITESS

| i cense. t xt contains terms of use.

The file Vi t ess is the main Tcl script to be called, the first line specifies which wish is used.

GUI
has all other *.tcl sources which are auto-loaded

MODULES
binary executables for modules. A Module a comes in variants
a. exe windows
a_Li nux 32 bit Intel systems
a_Linux_x86_64 64 bit, Opteron, Xeon
a_Darwi n Mac 32 bit
a_Darwi n_x86_64 Mac 64 bit

SRC

has all module sources and files necessary for compilation.

Bl TMAPS
auxiliary graphic files

WAV
HTML and GIF files of the documentation
Concepts
Texts to understand features like thread parallelization or visualization
FI LES
parameter files and example directories; contains reference instrument simulations for validation of new
releases
Rel Not es
release notes of VITESS releases
TOOLS
gridrun

IDL / PV-Wave routines for visualisation of neutron data

When installed under Unix the main Tcl/TK source Vi t €ss has to be adopted to the Tcl/TK installation path by help
ofthei nst al | AndTest script.

24/10/13 3

file:///C:/program

When installed by the self-extracting program generated by InnoSetup under Windows, the installation directory may
contain the Tcl/TK distribution, and gnuplot, too. These files as the subdirectories bin, binary, demos, doc, include, and
lib come from the Scriptics Tcl/TK distribution and gnuplot. These are not part of the VITESS software itself, but are
added here for convenience.

Subversion Repository

The subversion (svn) repository at https://www.helmholtz-berlin.de/svn/vitess/trunk is a mirror of the directory tree of
the VITESS installation. Developers communicate by means of subversion, where each person has his own working
directory, to be committed to the repository when ready. An official release corresponds to a subversion revision
number, like the release 3.1 corresponds to revision 430.

Intermediate svn revisions may be used by developers and interested persons, but have not undergone integration and
quality tests.

Mere bug fixes between major official releases are announced, will have different svn revision numbers, but just
supersede the published version.

Integrate a Module to VITESS

If you plan to add a new simulation module you probably understand the overall idea of neutrons samples in the
simulation pipe, and how neutron states are coded in the C struct Neutron. You may then edit a program exanpl e. ¢
to read command options, process neutrons, and write statistical output.

Assumed you work with Windows, the compiled output exanpl e. exe then should be copied to the MODULES
directory.

Without further modification of the GUI you may then test your module as an ,,external command®. To use an external
command with the GUI you have to specify the execution file, and all parameters as string input. Thus you may use your
module immediately, but without the comfort of GUI parameter edit, check, and help.

Program Example

In a program example we will comment in detail code snippets necessary for an example module exanpl e. c.
exanpl e. c

uses controlled interrupts
general . h

declares time,wavelength,probability as double
and position, vector and spin as double[3]

init.h
declares macros and utility routines of
init.c

parses standard parameters --B --c --C --f --F --G --J --L --P -t --T --U --v --V --Z

24/10/13 4

https://www.hmi.de/svn/vitess/trunk

Structure of example.c
/*************************/

/* VITESS module example */

/*************************/

#include "init.h"
int Parh;
/* own initialisation of the module */
void OwnInit (int argc, char **argv) {
char *arg;
int Option;
fprintf (LogFilePtr," \n") ;
print module name ("example")
argv++; /* skip program name */
while ((arg = *argv++)) {
arg++; /* skip - char */
switch (*arg++) {

case 'A':
sscanf (arg, "%d", &ParA); break;
VA
}
}
}
void OwnCleanup () {

/* do some final action, like logging. */
fprintf (LogFilePtr, "\nsome logging");
}

int main (int argc, char **argv) {
Neutron output;
int 1i;
Init (argc, argv);
OwnInit (argc, argv);
DECLARE SOFTABORT
while (ReadNeutrons () != 0)
for (i=0; i<NumNeutGot; i++) {
CHECK
/* process the neutron ... */
WriteNeutron (&output) ;
}
my exit:
OwnCleanup () ;
Cleanup(0.0,0.0,0.0, 0.0,0.0);
return 0;

Oml ni t should process only options which are specific for this module, others should be left for the generic | ni t

subroutine.
ReadNeut r ons is a general tool routine which sets the global variable NunmNeut Got .

Wit eNeut ron and C eanup are tool routines you should use. Put module specific code to OmMmCl eanup.

Most of your specific code will be around the ,,process the neutron® comment.

All non-pipe verbose output should be printed to LogFi | ePt r, output to st dout is reserved for pipe neutrons, and
output from different modules to st der r is mixed up to rubbish.

Macros DECLARE SOFTABORT and CHECK are for controlled abortion of pipe execution. CHECK should be
inserted where a jump tomy exit ispossible; computation time between successive CHECK calls should be short.
You might look at slit.c as the simplest real module to see more.

24/10/13 5

Structure of general.h

#ifndef GENERAL H
#define GENERAL H

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<math.h>
<string.h>

#ifdef MSC_VER
define M PI 3.14159265358979323846

#endif

typedef double VectorTypel[3];
typedef double DoublePair[2];
typedef struct {

TotallID ID;

char Debug;

short Color;
double Time;

double Wavelength;
double Probability;
VectorType Position;
VectorType Vector;
VectorType Spin;

} Neutron;

#endif

The GENERAL_H ifdef-clause permits nested includes.
_Msc_VER i1s defined for MS Visual / Net C++.

24/10/13

/* pi */

Structure of init.h

#ifndef INIT H

#define INIT H

#include "general.h"

extern long BufferSize; /* size of the neutron input and output buffer */
extern Neutron *InputNeutrons; /* input neutron Buffer */

extern Neutron *OutputNeutrons; /* output neutron buffer */

extern long OutNeutPtr; /* points to the next free position in OutputNeutrons */
extern long NumNeutGot; /* number of neutrons read in the current batch */
extern long NumNeutRead; /* number of neutrons read in total */

extern long NumNeutWritten; /* number of neutrons written in total */
extern FILE *InputFilePtr; /* stream from which the neutrons are read */
extern FILE *OutputFilePtr; /* stream to which the neutrons are written */
extern FILE *LogFilePtr; /* stream to which things are logged*/

extern char *InputFileName; /* file to read neutrons */

extern char *OutputFileName; /* file to write neutrons */

extern char *LogFileName; /* log filename */

extern double Temp; /* Temperature of the simulation */

extern long idum; /* random number specific */

void OutputBufferFlush();

void Init(int argc, char **argv);

void Cleanup () ;

int ReadNeutrons();

void CopyNeutron (Neutron *source, Neutron *dest);

void WriteNeutron (Neutron *QOutNeutron);

long parseline (char *Buffer, char *ptr[]):;

long ParseFileLine (FILE *In, char *ptr[]):;

long LinesInFile (FILE *In);

void ReadSourceData (double* p pCurrent, double* p pTimeMeas);

void WriteSourceData (double p dCurrent, double p dTimeMeas);

void print module name (char name[]);

#ifdef MSC_VER

define CHECK /* test semaphore and go my exit if finished */
define DECLARE SOFTABORT /* windows ... */

#else

include <signal.h>

static int finish;

void abort handler (int sig);

define CHECK if (finish) {goto soft exit;}

define DECLARE SOFTABORT signal (SIGTERM, abort handler);
#endif

#endif

24/10/13 7

Compilation example

Generate a Makefile

To compile the new module SRC/example.c you may generate a Makefile on a Unix system.
Edit SRC/mmake.pl and insert the module name to a list

#nmodul es which need | TOOL (=TOOL + intersection)

my @l = gwchopper_di sc chopper_ferni chopper_fermnm parallel
collimator_soller collimtor exanple slit grid source
spacew ndow spacewi ndow nultiple space | enses beanstop);

Things are this simple if you do not need special libraries. After that for Linux / Mac just

cd SRC
. I mmake. pl

This produces Makefile (+ compile.bat and vitess.mak for Windows).

make
make install

will put the correct binary images to the MODULES directory.

Compile and install modules on Windows

compile.bat

The first line of this batch command file defines pathes of compiler binary files, like
path c:\program files (x86)\microsoft visual studio 10.0\vc\bin;c:\program files (x86)\microsoft visual studio 10.0\common7\IDE

vitess.mak
This nmake makefile has some variables which you need to adopt:

PATH is the directory of compiler binaries, for Visual Studio 2010 this migth be
CPATH=c:\program files (x86)\microsoft visual studio 10.0\vc

CPATHS2 is the directory with the Windows SDK files, e.g.
CPATH2=c:\program files (x86)\microsoft sdks\windows\v7.0a

If you want to compile all sources, not just example.c, you need to compile some libraries first.

We provide sources for g2 and GNU pseudo random number generators in the g2 and rng subdirectories of SRC.
GPATH and GSLPATH are the directories where you compiled the libraries g2 and rng.

Used compiler flags are:

/GF eliminate duplicate strings

/MT multi threaded windows library

/Ox omit frame pointer

/Oy general optimization

/Og global optimization, obsolete for VS 10.0
/W3 compiler warning level 3

Adopting pathes should be sufficient to compile sources from the command line.

Open a cmd shell like on Windows 7 : search cmd, execute.
Within the shell cd to the SRC directory.

compile

copy release*.exe ..\MODULES

AL

24/10/13

GUI Integration : Editing Tcl Code

To have a smoother integration to the graphical user interface, you will edit Tcl code. You need not be a Tcl expert to
do this. If you do it like it has been done for other modules, that is if you copy from existing code, you may do it as
filling a form. Programming mistakes mostly aren't fatal, and the Tcl environment complains to give you a clue in case
of an error.

Some ideas about Tcl will help. In general every text line in Tcl is a command, where command parts are separated by
white space.

set a 5

sets the variable a to 5; set is the command, the number of blanks before 5 does not matter.

puts a + 1

prints ,,a + 1. To print the sum 6 you need

puts [expr $a + 1]

where $a denotes the value of variable a, and expr is the command to evaluate an arithmetic expression. The parentheses
[] are to be interpreted as ,,evaluate what's in [] and take the result®.

Another building block is lists. The VITESS GUI relies on lists of descriptions.
set Ii {a 3}
defines the variable li as a list of two items. The restriction ,,one command per line* is lifted for lists, that is list contents
between opening and closing curly brace may span many lines like in
set Ii {a
b

c}
set 12 [list x $li]
which defines variable 12 as a list of 2 items, where the second item is the nested list $li with tree items.

set 12 {x $li}
would not work, because there is no direct variable substitution within curly braces, and the second list item of 12 would
be the silly string “$1i”.

How to add a Module like slit to the VITESS GUI

1. Declare module slit in AvailableSET, the list of known modules
gSet slitESET ...
2. do more if your module needs special parameter files
Modify generateVitessCommand
if the executable file is not slit.exe
4. Copy slit.exe from SRC/ to MODULES/
5. Put slit.html help to WWW/

w

You mostly edit lists to add your module and define module parameters.

gSet is a command, xxxESET is the nested list variable with almost all parameter definitions for that module. If you
have a module xxx, you must provide a variable xxxESET.

If your module needs special parameter files of extension par and you want to edit these parameter files with GUI help:
1. gSet par ESET for parameter files with extension par
As exampleESET this is the list description for all parameters which may be part of a *.par file.
2. Modify editFile
This is more ambitious, as you write a Tcl procedure, but you may learn from others.
1. Modify editSave
The procedure editSave is for saving edits.
2. Write serializeParFile
serialising a file means writing the GUI parameters to a file or to read parameters from a file
serializeXyzFile is the procedure to serialise data of parameter type xyz
3. Add aline in fileDialog (tools.tcl)

24/10/13 9

Insertion of Modules slit and polariser_sm to the Module List
(vitess.tcl)

proc makeModuleSets {} {
global AvailableSET
set AvailableSET {
{source {source const wave source HMI source ILL
source short pulsed source ESS source IPNS source ISIS source SNS
source ESS LPTS} source}
{guide {} guide}

{spacewindow {space slit spacewindow spacewindow multiple grid}

{space slit spacewindow spacewindow multiple grid}}

{polariser {polariser he3 polariser sm} {polariser he3 polariser sm}}

AvailableSET is a list of module descriptions available. Because we have so many modules they are grouped like
the many source modules. spacewindow is the name of the module group, s1it a specific module; the second
occurrence of s1it tells which help information belongs to that module — as you can see all source modules refer to
the same source help information.

Definition of Parameters for slit in vitess.tcl

set slitESET {

{dist_slit float "" {"distance\n to slit [cm]" "" "" d} geO0}
{width slit float "" {"width [cm]" "width of rectangular slit [cm]" "" W}}
{hite slit float "" {"height [cm]" "height of rectangular slit [cm]" "" H}}

}

If you have a module slit, you need a Tcl list s1itESET.

slit has 3 float parameters with options -d, -W, and -H. dist_slit is the internal name for the distance value which must be
non-negative (ge0).

Parameters for polariser _sm are more demanding:

gSet polariser smESET {

{pfile pareditablefile polariser SM.par {"parameter\nfile"™ "" "" P} w pol 1}

{}

{x float 100 {"position\nX [cm]" "x centre position of the rectangular
geometry polariser" "" a}}

{y float 0 {"position\nY [cm]"™ "y centre position of the rectangular geometry
polariser™ "" b}}

Parameters may be of kind int, float, string, radio and file. Parameters are grouped in chunks separated by headers ({} or
{,,This is a header* header}).

Each chunk shows int, float, string, and file parameters in groups of the same kind, where e.g. 3 float values are grouped
per row.

The x parameter is a float value with default 100, labelled ,,position X[cm]*“ with a line break after position, it has a
longer help description, and corresponds to option -a.

Parameter pfile is an editable file, residing in the parameter directory, default file name is polariserSM.par, and the
corresponding option is -P. The file must be writeable (w), it's file extension is pol, and this parameter must be specified
().

Parameter names like pfile, x, y here are arbitrary made of letters, digits and underscores, and must be distinct for each
module, but need not be different for different modules.

24/10/13 10

General Positions and Meaning in Parameter Lists

Parameter lists should have names ending with (or at least including) ESET like singleDetectorESET.
List items 0,1,2.. have a position-dependent meaning.
0 depicts the first list item as Tcl counts list items 0,1,...

0 name of global variable

name should be unique for the module, and should consist of small letters and digits
1 type, one of { float int string longstring select radio filename editablefile browsefile browsedir

parfil ename pareditablefile parbrowsefile noneditablefile non2editablefile }

browse indicates entries which are selectable by a file browser

par indicates a file which must reside in the special default (parameter) directory

moneditablefile is a pareditablefile and a monitor output file of 1-dimensional data,

where mon2editablefile is for 2 dimensional data

2 default value
3 comment list
item 0: label text
item 1: long description text (optional)
item 2: callback procedure to show long description (optional)
item 3: command option prefix string (optional)

other entries depend on type

for type sel ect
4 list of pairs with {name appendix default bool}

for types browsefile browsedir editablefile parbrowsefile pareditablefile
nonedi t abl efi |l e non2editablefile
4 r for a readable file,
w for a valid filename
5 file extension, used to specify GUI-editable files
6 1 for mandatory
7 d for directory

for types fi |l enane string |ongstring
4 like browsefile

5 dummy
6 like browsefile

for type radi o
4 list of selectable items
5 list of corresponding keys (may be omitted)

for types f | oat int

4 min or 1 if no value 5, but a valid specification is necessary
may specify a range like gt3 for values greater than 3, or use comparison operators are
eq,ne,ge,le,gt, and It like 1t100 for less than 100

5 max
for control variables additionally

6 not needed: if this is 1, then empty input is allowed

24/10/13

11

Another Parameter Set Definition, now for Module frame

Frame
#H#
gSet frameESET {
{Transformation header}
{seqg radio RTM {sequence "sequence of Rotation, Translation, and Mirroring" "" S}
{RTM RMT TRM TMR MTR MRT} {1 2 3 4 5 6}}

We include this to show a radio selection parameter, where e.g. the GUI selection RMT corresponds to parameter -S2
Definition of parameters in *.pol files

gSet polESET {

{dx float 60 {"dimension\nX [cm]" "length of the polariser"} gtO}
{dy float 10 {"dimension\nY [cm]" "width of the polariser"} gtO}
{dz float 10 {"dimension\nZ [cm]" "height of the polariser"} gtO}

{nc int 9 {"number of\nchannels" "number of channels in vertical direction"} gel}
{dw float 0.05 {"wall\nwidth [cm" "width of the wall between the channels"} gtO}
{cp float 0 {"cutoff\nprobability" "minimal probability weight transmitted"} geO}

As you may see it is not necessary to specify an option character here, values of parameters in files are read from the
file, and are not provided as GUI input value.
Parameter dx is forced to be positive here (gt0) as nc is forced to be a non-negative integer.

Necessary Changes of Edit/Save Routines for Parameter Files

(vitess.tcl)
Editing parameter files is facilitated by just defining the VITESS parameter lists, but you must provide code to read and
write the special parameter files, and add a unique parameter file extension (pol in the example).

proc editFile {var param ext app} {

Edit parameters from a parameter file with extension ext.

S$varS$Sapp is the name of the parameter file, param is a parameter for editSave.

This GUI generator relies on serializeS${ee}File (where $ee is capitalized S$ext) to read a
file

and editSave to store the results.

switch S$ext {
chp - crs - ine - ref - san - pow - pol - iso {set special 1}
default {
}
}
if S$special {
switch S$Sext {
iso {serializelsoFile $f r $var S$Sapp!}

pol {serializePolFile $f r Svar Sapp!}
chp {serializeChpFile $f r S$var S$Sapp}

}

generateEntries Sw.v ${ext}ESET {} Sapp
} elseif {$f != "0"} {

while {[gets $f line] >= 0} {$w.v.text insert end "$line\n"}
}

editFile is called when it comes to editing a parameter file. Depending on the extension different things are to be
done. You add the line pol {serializePolFile $f r Svar Sapp} and provide the procedure
serializePolFile

24/10/13 12

editSave is called when when a parameter file has to be stored. You again add the line
pol {serializePolFile S$f r Svar S$Sapp} and provide the procedure serializePolFile

proc editSave {var param ext app {saveAs 0}} {

catch {
switch S$Sext {
chp {serializeChpFile $f w S$var S$Sapp}
crs {serializeCrsFile $f w S$var S$Sapp!}
san - pow {serializeSamFile S$f w S$var S$Sapp Sext}

pol {serializePolFile $f w Svar Sapp!}
default {puts $f [Sw.v.text get 1.0 end]}
}
}

proc serializePolFile {f mode var app} {
set nlist {dx dy dz nc dw cp gx gy gz ax ay az}
foreach 1 $nlist {
upvar #0 $1Sapp S$1
}
if {Smode == "r"} {
foreach 1 $nlist { catch {unset $1}}
if {$f == "0"} return
readNumItems S$f S$Snlist Sapp
} else {
puts S$f "S$dx $dy $dz\nS$nc $dw Scp\n$gx $gy S$gz\nSax Say Saz"

pol files are text files with 4 lines of 3 numbers each.
Reading is done with the help of the readNumltems tool routine, writing just calls the puts command.

GUI values are accessed by global variables with an special appendix $app like dxSapp.
Changes, if Module Name and Name of executable File differ
(comexe.tcl)

compose the VITESS command pipe string

i #
proc generateVitessCommand {} {

for {set i 1} {$i <= S$maxModule} {incr i} {

switch S$var {
source HMI {set com "source$sys -S1"}
source ILL {set com "source$sys -S1"}
source_ short pulsed {set com "source$sys —-S2"}
source cws {set com "source$sys -S1"}

generateVitessCommand is the Tcl routine called when it comes to generate the overall pipe command. You
need only insert a single line for your module like it is done here for source HMI. As you may see it is possible to use
one program source$sys for different modules with a silent parameter (-S in the example).

It is default behaviour to call slit.exe for module slit under Windows, so we do not add code for these simple cases.

24/10/13 13

Changes for File Dialogue File Types

(vitess.tcl)

proc fileDialog {operation {ext ""} {ifile Untitled}} {
Type names Extension(s) Mac File Type (s)

set types {
{"All files"™ {*}}
{"X,Y ASCII files"™ {.dat}}
{"2 D Intensity files" {.out}}
{"chopper files" {.chp .par .dat}}
{"crystal description" {.crs .par .dat}}
{"powder sample description" {.pow .par .dat}}
{"sans sample description" {.san .par .dat}}
{"sample reflectometer description" {.ref .dat}}
{"inelastic sample description" {.ine .par .dat}}
{"elastic isotropic sample description” {.iso .par .dat}}
{"polarizer sm description" {.pol .par .dat}}
{"GUI settings" {.gui}}
{"Batch command files" {.bat}}
{"Tcl files™ {.tcl}}

If we tell the Tcl/TK browser what file type we're looking for, it restricts files shown to those of that type. Here we
added that polarizer sm description files come with extensions .pol, .par or .dat.

24/10/13 14

Speeding up Your Simulation

Split the Pipe

If you vary mostly parameters of modules in the end of the pipe, you may save much time if you save the output of the
first part of the pipe to a file. This file then may be read over and over again.

The size of this file may be reduced if you specify compression.

This file should reside on a local disk. If you have a very big number of trajectories, consider to use one of the other
GNU random number generators instead of ran3.

Use helper threads

Modern CPUs have two or more cores which may be used to execute parallel threads of compute-intensitive modules
like guides or the super mirror ensemble. If the code of a module has been adopted to threads, setting the —T parameter
instructs it to process neutrons by threads.

If you are programming a new module, and you know it will use CPU ressources heavily, it may be worth to consider
thread support. Have a look at Concepts/parallel threads.txt then.

Switch to Batch Processing

Some simulation started on your laptop may take too long there. It is easy to switch to different hardware, only copy
your instrument definition and contents of the working directory to a Linux server. You may work with the GUI there,
too. For simulations lasting days it might be better to save Tcl commands and start pipes from the command shell.

Use a Grid

If you know how to use Linux it's only a small step to use a grid of compute nodes. Here we explains how to use the
gridrun script to start a job with a grid engine or secure shell remote execution.

Who is to blame?

If you have a pipe of 20 modules it may seem all modules have equal impact on the performance. But if you watch a
working VITESS pipe with the task manager under Windows or the top command under Linux, you will see the truth.
It's one module in most cases which makes the CPU load, and that module probably is a source module, or a module
which absorbs neutrons like choppers do, or a module with complicated reflection/absorption calculations like guide or
sm_ensemble.

Reading the documentation more carefully you may find parameter settings for that module, which by taking into
account some extra knowledge you may provide speed things up, or you may find that this module is inappropriate at all.

If you have the feeling that this module just wastes time for nothing, you could debug that module. Cut the pipe before
that module to have a neutron input file. Asking the author of the module by email may be easier.

Using Pipes for Grid Execution

When a simulation takes very long time, you may consider computer grids to do the number crunching.

The VITESS GUI alone will not be of much help then, because you won't sit there watching the progress bar of the GUL
Of more concern: You may not have a Tcl/TK installation on grid nodes, and you are told to use the Grid Engine at
hand.

The answer here is to use the GUI to generate the pipe for your instrument and do first runs interactively to sort out
simple errors. Then you save the pipe with “Save as Grid Command”, which generates a shell file to be used on a grid
engine. The Perl script gridrun from the TOOLS directory then helps to execute the pipe on the computer grid.

How to use parallel Pipes

If you start a pipe on many nodes without modification, the only good result can be that all outcomes are identical. You
probably do not want this, but to improve the statistics of the simulation, to make the sample n times as big, where n is
the number of pipes working in parallel.

The pipe output is strictly determined by pseudo random generators. We assume that you double your statistical sample
if you start two pipes with different random number seeds, keeping the number of trajectories of each pipe, and merge

24/10/13 15

the result appropriately.

gridrun knows how to merge results of parallel pipes! Monitor spectra are summed up, with correct calculation of errors
if present in spectra. Neutron trajectory files are concatenated. But don't use trace output or graphical output in parallel

pipes, as this would come out mangled, if at all.

Normally all modules of the pipe get the same random seed with the —Z parameter. For parallel execution of pipes this is

changed, each module of each pipe gets a unique random seed by gridrun.

Gain

Parallel execution is of value even for single computers. With multi-CPU (m) boards of dual core CPUs it may be useful

to do up tom * 2 (m * 4 for quad core) parallel pipes.

If you want to use multi-node grids, gridrun does the necessary things to copy files to temporary directories, start jobs
nodes via secure shell or grid engine commands, merge results, and clean up things finally.

gridrun is a Perl script and uses Unix commands, which are available on most grid engines. You may use the script
without a grid engine on a multi-CPU PCs with Linux and ssh, if all computers have a common home directory .

Parallel Execution Example at HZB

I'm user JOE, and installed VITESS in my home directory ~/ vi t ess, thatis / net/ home/ JOE/ vi t ess on my
Linux PC or dinux6.

After proper building an instrument using the working directory ~/ vi t ess/ FI LES/ nyi nstrunent, I found my
simulation does take so long I'd like to speed that up using the Grid Engine on the dirac cluster.

First I created the file i nst r unent . gr d using the VITESS "Save Grid Command" menu.

To submit a batch job using 4 pipes on queue long of the Grid Engine I login to dirac and do

cd /net/hone/JOE/ vitess/FlI LES/ Myl nstrunent
../../TOOLS/ gridrun instrunent.grd —node=long -p 4

If node31 is free, another direct call could be

../../TOOLS/ gridrun instrunent.grd —ssh=node31 -p 4

gridrun prompts for missing input. If everything necessary is given and valid, gridrun starts the job and tells me a job
number <number>. Calling

../../TOOLS/ gridrun -i <nunber>

later will inform me if my job is still running, or if I may finalize — merge results and clean up — things with
./../TOOLS/ gridrun -f <nunber>

Any questions ? Just call

../l../TOOLS/ gridrun-h

24/10/13

on

16

Contents

VITESS SOFEWATE.......ceutiiiiiiiiieitetee ettt ettt sbe bbb e et e et eeebaeebae s 1
VITESS BUilding BIOCKS.ccouiiiiiiiieiiieiiecie ettt ettt eteesbe e e esveensaeeeennnea s 1
Piped COmMEANS........c..oeiiiiieiiieiee ettt ettt s e e et eestaeeestaeeesreeesaeeensaaaeeeeannes 1
Parameters as Command ATGUMENLS...........ccuieruieriieiiienieerieeeeeeieeseeeesseesaeeseessseesnneeenns 1
VITESS DeSi@N PrinCIPIEs.....cccouviiiiiieeiieeeiie ettt ete et e sve e e e e saaeeesaaeessaeeensaaesnsaeaeeas 1
Multi Platform SUPPOTTL.......cceieiiiiiieiieeie ettt ettt et sae e sbee e eneae e 1

Easy Integration of new Simulation Modules...........c.ccoecuiiiriiiiiniieiniieeieeceeceeeee e 1
Consistency Of Parameters........c.coueeuerienieiiinienieeiere et s 2

Features 0f the VITESS GUIL.....cccooiiiiiiiiiieieeeee ettt sttt e s 2
o) 1 1011 1S PSPPSR 2

Default Parameter DIr€CtOrY........ieruiiiiieriieeiieriie ettt ettt et eite et seeeeteesieessab e e eaaeeeans 2

Save and ReStore SEttNgS........cc.ueiviuiiiiiiiieiiieeciie et e e et e e saae e e eae e seeeeenenees 2
Controlled EXECULION.cc.uiiuiiriiiiiniiiieiieetete ettt 2

(1163 101 3 (5] 1o T USSR SPPR 2

LLOZEINE. ..ttt ettt ettt et ettt e ettt e te e bt e e nb e e bt e ent e e bt e e st e e e eanees 2
SOFIWATE TOOLS. ...ttt ettt et sa et e st e bt e te e st e naeeeneeeaee 3
C/CA COMPILCT ...ttt et e et e et e e e e e ba e e sstaeesseeesnseaaeeesnssaaeaeeennnns 3

TCITK ettt ettt et b e et sa bbb sae et e e sae e b eaee 3
VITESS CONVENTIONS.eiiiiiiiiiiieeieeeiie ettt et sttt ettt e st e bt e sab e e beesabe e bt e esbeenabeees 3
INStallation DITE@CLOTY......cciuiiiiieiiietieiie ettt ettt ettt e e e eeenaes 3
SUDVETSION REPOSIEOTY.....uvieuiiiiiiiiiieeiiietie ettt ettt ete et e e bt esteesnbeesteeesseessaesnsaesaeesseensseesnseeeennses 4
Integrate a Module to VITESSo ettt et e e e e enaaaeee s 4
Program EXAMPIE..........coouiiiiiiiiiiieiiece ettt et ettt et e e et e e et ee e naeeennee 4
Structure Of EXAMPLE.C....vvieeiiieeiiieeie e e et e e e e e 5
Structure of @eneral.n.........c.cooiiiiiiiii s 6
Structure of NIt N ..o 7
Compilation EXAMPIE........uieiiiiieeiie e eetie ettt e et eeseaeeetaeeeereeeaaeesbeeeesseeessseeessreeesnsaeeaeeanns 8
Generate @ MaKe eooiiiiiiiiiiee e 8
Compile and install modules on WINdOWS..........ccceeecuiiiiiiiiiriiieiee e 8

GUI Integration : Editing TCl Code.........oooiiiiiiiiiiiieie ettt 9
How to add a Module like slit to the VITESS GUIL......cccccoooiiiiiiiiicecee 9
Insertion of Modules slit and polariser sm to the Module List..........ccccceevieniienniieens 10

General Positions and Meaning in Parameter LiSts.........ccccceeviieriieiiieniieiiie e eeieee e 11
Another Parameter Set Definition, now for Module frame...........ccccoovvvveiiiiiinnnnnnn 12
Necessary Changes of Edit/Save Routines for Parameter Files...........ccccooveneniininicinicnnnen. 12
Changes, if Module Name and Name of executable File differ............cccoeovvieeiiiiniiiniiienns 13
Changes for File Dialogue File TYPEScoouiiiiiiiieiiieiieiieeee et 14
Speeding up Your SIMUIATION.cccuiiiiiiiieeieeiee ettt et e sbeesteeesbe e seeessaeseeesseensaesaseas 15
SPIIE thE PIPC..eiineiiiiiiie ittt e et e et e e e tae e e tbeeesaeessaaeesasseesssaeeensaeeaeaanns 15
USE helper thr@ads.ccuvieiiiiiieiieiie ettt ettt et et et eesbeessaeseseesaeeenseeennes 15
Switch t0 BatCh ProCESSING........iiiiuiiiiiiieiiie ettt e ettt e ee e s tae e st e e e ssteeesntaeeensaeeeas 15
USE @ GGttt ettt et st b et eb e sb e et sae ettt eae e st e et e e 15
WHhO 18 10 BIAMET ...ttt sttt e et e et n 15
Using Pipes for Grid EXE@CULION........coiiiiiiiiiiiiieicnieciees ettt e 15
How t0 USe paralle] PIPes.......ccveviieiiiiiiieiieeie ettt ettt e e e 15

[1 s PO SRR 16

Parallel Execution Example at HZB............ccccoiiiiiiiiiiiciee et 16

24/10/13 17

	VITESS Software
	VITESS Building Blocks
	Piped Commands
	Parameters as Command Arguments

	VITESS Design Principles
	Multi Platform Support
	Easy Integration of new Simulation Modules
	Consistency of Parameters

	Features of the VITESS GUI
	Parameters
	Default Parameter Directory
	Save and Restore Settings
	Controlled Execution
	Click for Help
	Logging

	Software Tools
	C/C++ Compiler
	Tcl/TK

	VITESS Conventions
	Installation Directory

	Subversion Repository

	Integrate a Module to VITESS
	Program Example
	Structure of example.c
	Structure of general.h
	Structure of init.h

	Compilation example
	Generate a Makefile
	Compile and install modules on Windows

	GUI Integration : Editing Tcl Code
	How to add a Module like slit to the VITESS GUI
	Insertion of Modules slit and polariser_sm to the Module List

	General Positions and Meaning in Parameter Lists
	Another Parameter Set Definition, now for Module frame

	Necessary Changes of Edit/Save Routines for Parameter Files
	Changes, if Module Name and Name of executable File differ
	Changes for File Dialogue File Types

	Speeding up Your Simulation
	Split the Pipe
	Use helper threads
	Switch to Batch Processing
	Use a Grid
	Who is to blame?
	Using Pipes for Grid Execution
	How to use parallel Pipes
	Gain
	Parallel Execution Example at HZB

