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ABSTRACT 
 
We offer a numerical simulation tool, AFORS-HET, for pub-
lic use, which allows to model homo- as well as heterojunc-
tion devices. AFORS-HET is the short form of automat for 
simulation of heterostructures and can be downloaded via the 
internet: http://www.hmi.de/bereiche/SE/SE1/projects/aSicSi/ 
AFORS-HET
 
An arbitrary sequence of semiconducting layers can be mod-
elled. A variety of boundary conditions can be chosen. The 
program solves the one dimensional semiconductor equations 
in steady-state and for a small sinusoidal ac-pertubations. 
Furthermore, a variety of common characterisation techniques 
have been implemented, like current-voltage (IV), internal 
quantum efficiency (IQE), impedance, capacitance (CV, CT), 
static surface photovoltage (SPV), electron beam induced 
current (EBIC) and photoluminescence (PL). A user-friendly 
interface allows to easily perform parameter variations, and to 
visualise and compare your simulations. 
 
 
1. INTRODUCTION 
 
In order to investigate amorphous/crystalline silicon heterojunc-
tions a lot of different electrical measurement methods have been 
used, as high efficiencies have been reached [1]. Besides standard 
solar cell characterisation techniques, such as current-voltage (I-
V) and internal quantum efficiency (IQE), more advanced charac-
terisation techniques have been applied, like capacity-voltage (C-
V) [2], photoluminescence (PL) [3], or electroluminescence (EL) 
[4]. We therefore developed a numerical simulation tool, which 
allows to simulate the output of all these measurement techniques 
for hetero structures consisting of ultra thin a-Si:H layers (5 nm) 
combined with thick c-Si layers (300 µm). We extended the capa-
bility of the program in the sense that now an arbitrary sequence 
of semiconducting layers and interfaces with an arbitrary number 
of defects distributed within the band gaps can be simulated, being 
able to choose among different models for the transport of charge 
carriers across the interfaces. Furthermore, we introduced a user 
friendly interface, which allows to perform multidimensional 
parameter variations and to easily visualise and analyse the corre-
sponding results. 

2. PHYSICAL MODEL 
 

2.1 Bulk 
      The steady state of the heterostructure is modelled by the use 
of the semiconductor equations [5, p.9]: 
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Here, D is the displacement field, p and n the hole and electron 
densities, ρ is the net charge of all traps located in the band gap, 
NA/D is the acceptor and donor concentration, respectively. Jn and 
Jp are the electron and hole current densities, G the optical genera-
tion Rate, Rn and Rp are the electron and hole recombination rates. 
The recombination is modelled by auger-, direct band to band-, 
and Shockley-Read-Hall recombination. We used boltzmann sta-
tistics for the calculation of electron as well as hole concentration. 
 
2.2 Boundary conditions 
      The potential is fixed to zero at the front contact. It is deter-
mined by the sum of the difference of the metal contact work 
functions  at the front and rear contact and the applied voltage at 
the rear contact if voltage controlled boundary conditions are cho-
sen. The electron and hole currents into the metal contacts are 
modelled by thermionic emission. At the front contact ( x=0) the 
equations. 
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are applied. The algebraic signs of eq. (5) and (6) account for the 
projection of the direction vector of current density to the normal 
vector of the front surface. At the rear contact (x=w), with an ap-
plied voltage V the equations 
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have to be fulfilled. φf and φb are the metal work functions of the 
front and rear contact, respectively. S is the recombination veloc-
ity at the specified contact. For majority carriers S is usually the 
thermal velocity of the corresponding charge carriers. For minor-
ity carriers S can be much smaller, depending on the surface pas-
sivation.  
Other boundary conditions could be used as well: If current con-
trolled boundary conditions are used, eq. (7) is replaced by an 
equation which says that the applied current is equal to be the sum 
of the electron and hole current. An other possibility is to use 
insulating boundary conditions. In this case it is assumed that the 
electron and hole current has to recombine at the insulating inter-
faces and no net current crosses the Insulator. For the boundary 
condition of the potential Gauß’s law is applied and eq. (7) is re-
placed by: 
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 εsem and εins is the permittivity in the semiconductor and the insu-
lator respectively. Qint represents the the charge at the interface. If 
the user wants to use this boundary condition he has to adjust the 
Capacitance and thickness of the insulating layer and has to chose 
MIS boundary conditions.  
 
2.3 Interfaces 
      The interfaces can be modelled in two ways:  
(a) No additional boundary conditions are applied, but the current 
of the holes is modelled by modified expressions for the currents, 
which account for the fact, that currents are additionally driven by 
gradients in the effective densities of state as well as gradients in 
the energy gap and electron affinity.This approach is equal to the 
approach of the simulation tool AMPS 1D [6]. 
(b) themionic emission model, fig. 1: This model is also used in 
SCAPS 1D [7] and uses the model from Pauwels formalism [8] for 
recombination currents across the interfaces.The transport of  
 
charge carriers from one semiconductor to the other is modelled 
via thermionic emission and by recombination across interface 

defect states. This states interact not only with one but with both 
adjacent semiconductors. Therefore charge carriers can transverse 
the interface via defect states from one semiconductor to the other. 
As a consequence the distribution function of the defect is mod-
elled by four capture cross-sections, two for the holes and two for 
the electrons in the adjoining two semiconductors. The potential is 

assumed to be continuos across the interface. Therefore this model 
excludes the modelling of buffer layers, that only act as dipole 
 
 
3. NUMERICAL PROCEDURES  
 
     AFORS-HET solves the semiconductor equations (1)-(3) and 
the appropriate boundary conditions in one dimension numeri-
cally. The set of coupled partial differential equations is trans-
formed into a set of nonlinear algebraic equations by the method 
of finite differences. The electron and hole currents are discre-
tisised by an exponential fitting scheme in order to enhance nu-
merical accuracy and convergence [5, p. 157]. The resulting  set of 
equations have to be solved on a lattice, which represents the con-
tinuum of the differential equations as well as possible. We used nl 
, pl and ϕl at each lattice point as independent variables. All other 
variables, e. g. Rn, Rp depend on n, p and ϕ. The three equations 
(1)-(3) and the boundary conditions for the rear and front contact 
can be viewed as a three dimensional vector Gl(n,p,ϕ), with one 
dimension for each equation. The set of N vectors Gl have to be 
fulfilled at the N lattice points of the discretisation scheme and 
can be written as 
 
                                  0=lG ,                                     (11) l∀
 
The calculation of n p and ϕ is done by an iteration scheme which 
needs a well adopted guess for these variables. The calculation of 
this guess will be explained now and will also show where the 
lattice points of the discretisation are placed.  
First the Charge neutrality is calculated for each layer, giving n 
and p in each lattice point of the layer. With the knowledge of the 
charge carrier concentration, the electron affinities and the doping 
concentrations, the voltage drops in each layer can be calculated 
from analytical models [9, p. 76]. Assuming a x2 dependence of 
the potential from distance in space charge regions a first sugges-
tion is given for the potential. The lattice points, on which the 
algebraic semiconductor equations have to be solved, are set 
equally distanced in a user defined potential spacing, not in dis-
tance spacing. The lattice points in the neutral regions have the 
same distance from each other. Altogether the lattice points are 
adjusted in a way that there are a lot of lattice points within the 
space charge regions and viewer points are within the neutral re-
gions. It should be mentioned, that the  lattice spacing is not opti-
mised to the absorption coefficient of the layer. This might result 
in bad approximation for the exponential decaying generation 
rates if the sample is illuminated. The lattice points are fixed dur-
ing calculation. 
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Fig. 1: Recombination 
model for the simulation of 
recombination after [8]. 
Interfacestates Nit interact 
mit both adjacent seimcon-
ductors and thus for re-
combination paths are indi-
cated. 

The solution of the semiconductor equations is found by the New-
ton Raphson iteration algorithms [5, p. 208]: The k+1  solution of  
Gl

k+1 is found from the previous solution Gl
k with the help of a 

correction vector which is calculated from the Jacobimatrix of G. 
This procedure is recalculated until a desired accuracy c is 
reached: 
                                 ,                         (12) cGabs l <|)(| l∀
c has to be adopted by the user. We solve for the new nl pl, and ϕl  
in one step by calculating all three semiconductor equations in one 
step and not by solving each of the 3 semiconductor equations step 
by step with new calculation of p after n after phi, as it is done by 
the Gummel algorithm. This procedure gives better convergence 



for the modelling of defect rich materials such as a-Si:H, as the 

coupling of the semiconductor is enhanced if high defect densities 
with high recombination rates are involved.  
 
No special equations have been used to solve the semiconductor 
equations for thermal equilibrium. The boundary conditions are 
adjusted to V = 0V, and naturally, no illumination is applied. For 
steady state the desired boundary conditions have to be chosen, 
e.g. voltage or current and monochromatic and/or spectral illumi-
nation. Please note, that the solution to the new boundary condi-
tions are calculated from the last solution. So, if a calculation fails 
it might be a good idea to adjust the new boundary conditions step 
by step to the desired values.  
Once the steady state solution is found the ac-solution is calcu-
lated in one step by a linear  expansion of the semiconductor equa-
tions, which result in [10]: 
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where the tilde ~ indicates  a small signal complex amplitude, j is 
the imaginary unit. By definition the system is linear in the small 
signal amplitudes of n, p and phi, the system can easily be solved  
by inverting a complex Jacobimatrix just once. In the ac-Mode it 
is assumed, that the steady state solution is already found, thus Gl 
is equal to zero for all lattice points and the small signal amplitude 
of the disturbance has to be added to each lattice point. For exam-
ple if a small ac-voltage is applied at the rear contact the small 
signal perturbation is only at the last lattice point. If a modulated 
light source is used as small signal ac perturbation, every lattice 
point is disturbed. More detailed information concerning the 
physical model and the algebra behind can be found in [11] and 
references therein. 
 
 

4. SELECTED RESULTS 
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   In the following section we like to give a short overview of the 
capabilities of the program. We used the tool so far mainly to 
simulate amorphous/crystalline silicon heterojunction solar cells.  

4.1 Simulation of band diagrams: 
After having input the layer structure the thermodynamic equilib-
rium is solved for this heterojunction. Band diagrams, current 
densities, charge carrier concentrations are presented in a separate 
window. As an example, the band diagram of a typical a-Si:H/c-Si 
structure is presented in fig. 2. 

The graphs can be modified  according to the users wishes, e.g. 
log or linear scale, zooming, defining a certain range and more. 
Also some mathematical operations can be done directly in this 
window, such as measuring values, differences of  two specified  
points or the integral of a certain range can be evaluated. 

Fig.2: simulated band diagrams at equilibrium of a- a
a Si:H(n)/c-Si(p) as it is used in reference [l2]. The a-Si:H(n
layer thickness is 10 nm in this calculation. 

4.2 Applying measurements 
     After the thermodynamic equilibrium is calculated for the 
structure the steady state measurement methods current voltage 
(IU), quantum efficiency (IQE), electron beam induced current 
(EBIC), surface photo voltage (SPV voltage, SPV spectral), and 
the small signal ac- methods Admittance, Impedance, capacity 
voltage (CV), capacity temperature (CT) can be applied with and 
without illumination. For illumination either a special spectrum 
and or monochromatic illumination can be used or a file that con-
tains the generation profile can be loaded.  Furthermore Sub-
bandgap photon absorption can be simulated by specification of 
optical capture cross sections. As an example The quantum effi-
ciency of a a-Si:H(n)/c-Si is shown in figure 2 for a-Si:H(n) emit-
ter thickness from 2 to 20 nm. 

As can be seen in the figure, absorption and reflection files can 
directly be included in the calculation. The thinner the defect-rich 
a-Si:H(n) emitter can be deposited, the less electron-hole pairs 
created in the emitter will recombine. Thus the internal quantum 
efficiency between 300 nm and 650 nm will be significantly en-
hanced by using ultra thin a-Si:H emitters.  

As an example for an simulation where small signal method is 
used a CV simulation is shown in fig. 3. From this graph it is pos-
sible to recalculate the doping concentration [9, p. 80] giving a 
doping concentration of 1.5e16 cm-3 and 5e15 cm-3, respectively 
as they have been input in the modelling of c-Si(p). The CV plot 
shows also simulation for various built in voltages by changing 
the band offset at the heterojunction interface. The calculated built 
in voltage from this graph correspond to the analytical values as 
long as the fermilevel does not touch the conduction band edge. 

As a last example the photoluminescence of an illuminated cell at 
open circuit condition is shown for two defect concentrations at 
the a-Si:H/c-Si interface.  

The spectrum is calculated from a generalised Planck’s  law that 
takes the splitting of the quasi fermilevels and the absorption coef-
ficients of the materials  into account [Würfel]. The PL signal is 
very sensitive to Defect concentrations as this will reduce the 
charge carrier concentration at open circuit conditions that deter-
mine the splitting of the quasi fermi level. This method could be 
used to simulate electroluminescence measurement methods as 
well, only the appropriate boundary conditions have to be applied.    
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A very interesting feature of AFORS-HET is the ability to do 
parameter variations automatically. This feature is easy to handle 
if one tries it a little bit, but far more complicate to explain. We 
encourage you to use  the program and to try it by your own.  
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Fig. 5: Photoluminescence spectra at open circuit conditions 
for two densities of defect states Nit. The spectra has it’s 
maximum around the band gap energy of c-Si. 
 

4. CONCLUSION AND OUTLOOCK 
    A new simulation tool has been presented: AFORS-HET. It 
runs on PC with Window 98, Window NT and more recent ver-
sions. If there is a high interest we will also try to run AFORS-
HET on LINUX systems. Originally it was planed that we want to 
distribute AFORS-HET as open source code, but we think the 
code is not well enough documented and it is not strictly enough 
programed in OOP. However, if there is a huge interest, we will 
try to manage it. Any updates and news can be found on the web-
page given in the abstract. Do not hesitate contacting us in case of 
questions or comments. 
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Fig 3: Simulated internal quantum efficiency of TCO/a-
Si:H(n)/c-Si(p) solar cells with varying emitter thickness. 
The TCO front contact absorption A and the reflection R, 
which has been used as a input parameter within the 
simulation, is also shown. 
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Fig.4: Simulated CV measurements for two doping 
concentrations NA and various band offsets, resulting 
in differing built in voltages.  
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