

Radiation Tolerant Electronics with Soft Halide Perovskites From Single and Multijunction PV for Space and Earth to Medical Radiation Detectors

Dr. Felix Lang, ROSI Freigeist Group

Space Solar Cells on ISS: 215 kWatt Power

III-V upscalable to GW or TW?

Mining of Raw Materials for 12TW

III-V = 1000 years
Silicon = 50 years
Perovskite = days

https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/ESA_reignites_space-based_solar_power_research J. Jean, P. R. Brown, R. L. Jaffe, T. Buonassisi, V. Bulović, Energy Environ. Sci. **2015**, *8*, 1200.

Carbon Footprint and Ressource Availability

1000 y-Limiting Element 100 y Mining time for 1TW* 0 10 y 1 y nthesis as iting step 1 d PerolCICS perolSilicon perolPero perolOrg orgIOrg 10

Perovskite-organic tandem solar cells

Kai O. Brinkmann ^M, Pang Wang ^M, Felix Lang, Wei Li, Xiao Guo, Florian Zimmermann, Selina Olthof, Dieter Neher, Yi Hou, Martin Stolterfoht, Tao Wang 🖾, Aleksandra B. Djurišić & Thomas Riedl 🖾

Nature Reviews Materials (2024) Cite this article

SPACE-BASED SOLAR POWER

esa

1 INCIDENT SOLAR RADIATION

- 2 SUNLIGHT CAPTURE AND ENERGY REGULATION
- **3** POWER BEAMING
- BEAM CAPTURE AND ENERGY CONVERSION
- **5** POWER TRANSMISSION
- **6** ENERGY UTILISATION

Can we use Perovskite PV ??

Carbon Footprint and Ressource Availability

What are Halide Perovskites?

Perovskite = Name of the Crystal Structure

What are Halide Perovskites?

Perovskite = Name of the Crystal Structure

Silicon crystal

Impurity concentration < < 10¹² cm⁻³ < < 1 ppb (Carbon 1 ppm, Oxygen 10 ppm)

Perovskite based Photovoltaics

Ideal for Photovoltaics

Efficiencies rival established technologies

Photograph: Jeol Jean, https://news.mit.edu/2016/ultrathin-flexible-solar-cells-0226

Perovskite based multijunction space-PV

Photograph: Jeol Jean, https://news.mit.edu/2016/ultrathin-flexible-solar-cells-0226

High Specific-Power Potential

Energy demanding satellites

SINGLE JUNCTION SOLAR CELLS MADE IN POTSDAM

Triple Cation Triple HalidePerovskite [Cs_{0.05}(MA_{0.05}FA_{0.95})_{0.95}]Pb(I_{0.95}Br_{0.05}Cl_{0.0x})₃ Ph.D. student

3000 rpm

intermediate

phase

annealing

at 100°C

SINGLE JUNCTION SOLAR CELLS MADE IN POTSDAM

Triple Cation Triple HalidePerovskite [Cs_{0.05}(MA_{0.05}FA_{0.95})_{0.95}]Pb(I_{0.95}Br_{0.05}CI_{0.0X})₃

Ph.D. student Biruk Alebachew

IMPROVING STABILITY

Jarla Thiesbrummel

Francisco Peña-Camargo

Kai Brinkman

Dr. M. Stolterfoht

16

All-Perovskite Tandems Made in Potsdam

High Gap Optimisation: Interfaces !!!

Photoluminescence Quantum Yield (PLQY)

 E_{G} (HG Pero) = 1.80 eV HTL ETL **10**⁻³ (on 2PACz) ≻074 10-4 **10**⁻⁵ TAA pero pero coo

Jarla Thiesbrummel

Peña-Camargo

Kai Brinkman

bad perfect

High Gap Optimisation: Interfaces !!!

Jarla Thiesbrummel

Peña-Camargo

Kai Brinkman

All-Perovskite Tandems Made in Potsdam

All-Perovskite Tandems Made in Potsdam

Efficiency **Potential From Bare**

Challenge: Large Areas (1cm²)

Challenge: Large Areas (1cm²)

oʻ öʻo

ITO

0.9.0

ITO

o'8'o

0'8'0

oʻöʻo

ITO

oʻço

Prof. Zhao & Team @ Sichuan University

1cm² Sized All-Perovskite Tandem PV

Prof. Zhao & Team @ Sichuan University

nature

27% All-Perovskite Tandems

Prof. Zhao & Team @ Sichuan University

Article Published: 29 March 2023

All-perovskite tandem 1 $\rm cm^2$ cells with improved interface quality

Rui He, Wanhai Wang, Zongjin Yi, Felix Lang, Cong Chen [⊡], Jincheng Luo, Jingwei Zhu, Jarla Thiesbrummel, Sahil Shah, Kun Wei, Yi Luo, Changlei Wang, Huagui Lai, Hao Huang, Jie Zhou, Bingsuo Zou, Xinxing Yin, Shengqiang Ren, Xia Hao, Lili Wu, Jingquan Zhang, Jinbao Zhang, Martin Stolterfoht, Fan Fu [⊡] , ... <u>Dewei Zhao</u> [□] + Show authors

R. He, W. Wang, Z. Yi, F. Lang et al.

Space Solar Cells on ISS: 215kWatt Power

The Harsh Radiation Environment in Space

(1) Todd, B.; Uznanski, S. Radiation Risks & Mitigation in Electronic Systems. *CAS - Cern Accel. Sch. Power Convert.* **2015**, *003* (May 2014), 1–19. https://doi.org/10.5170/CERN-2015-003.245.

p⁺ He²⁺ ...

Nuclear Scattering Displacement Damage

=

"A leak for electrons"

In-situ Measurements under Proton Irradiation

radiation induced current degradation

Perovskite/Perovskite Tandem extraordinarily stable !

Damage under AM0 illumination

Degradation in Spectral Response

Perovskite 2J

III-V 3J on Ge

Fun Fact: Radiation Hardness & Sun Spectrum

Fun Fact: Radiation Hardness & Sun Spectrum

Radiation Hardness Overview

In-Situ Example: Perovskite/SHJ Tandem

1.0

remaining factor

0.1

Atomic Oxygen AtOx

AtOx -- Ultrahin Space Encapsulation

Ph.D. student Biruk Alebachew

2D/3D Perovskite Single Junctions

Ph.D. student **Biruk Alebachew**

0

0

PEAI-interlayer improves the PCE and known to improve moisture stability as well Seid, et al. Small, 2024

PEAI

NH3+1

AtOx Degradation

Ph.D. student **Biruk Alebachew**

2D/3D Perovskite SC's degrade faster and more severe

Ph.D. student Biruk Alebachew

Ph.D. student Biruk Alebachew

Ph.D. student Biruk Alebachew

Ph.D. student Biruk Alebachew

JV characteristics

Quasi-Fermi Level Splitting (QFLS) from PL

Lang, F.;, M. ACS Energy Lett. 2021, 3982–3991.

Constructing pseudo-light JV curves

How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%

Dr. M. Stolterfoht

pseudo-light JV vs JV characteristics

Resistance-dependent Photovoltage (RPV) measurements

PEAI-passivated devices: – Low Mobility Interlayer formed

Further: Enhanced Ionic Losses

Electroluminescence Imaging

0min

2D Passivated

7

GIWAX

Seid, et al. Small, 2024

57

Lateral AtOx Ingress and Degradation

@#, θ=0.5°

The ROSI Group in a Nutshell

٠

Radiation Tolerant Soft Semiconductors

Next Generation Space **Photovoltaics**

Reliable Radiation Detectors

- **Reliable Radiation Detectors with High Sensitivity**
- ZB Zentrum Berlin
- New Medical Diagnostics that work with Lower Doses ٠

Library of Radiation Tolerant Soft Semiconductors

Radiation Tolerant Field Effect Transistors

Resilient Space Solar Cells

Resilient Contact Systems

Successful In-Orbit Demonstration

Deeper Understanding of their Stability

HySPRINT

Helmholtz Innovation La

berlin

Acknowledgements

Felix

Lang

Prof. H. C. Neitzert

Dr. Giles Eperon

Ph.D. Student Sema Sarisözen

Ph.D. student Biruk Alebachew Ph.D. student Sercan Özen APP -

Student

Julian

Cuervo

Dr. Andres F. C. Mendez

Soft Matter Physics and Optoelectronics, University Potsdam, Germany

