

X-ray absorption spectroscopy and its application to chalcopyrite and kesterite materials

Claudia S. Schnohr

Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Germany

SEMINAR FUB-03

Part I Basics of XAS

Part II Experimental aspects of XAS

Part III Applications of XAS to chalcopyrite and kesterite materials

X-ray absorption spectroscopy (XAS)

powerful technique for structural analysis

complementary to other techniques such as diffraction or electron microscopy

applicable to crystalline and disordered materials, liquids and even gases

physics, chemistry, material science, geology, biology, environmental science, ...

Literature

<u>Books</u>

- S. Calvin, XAFS for Everyone, CRC Press, 2013
- G. Bunker, Introduction to XAFS, Cambridge University Press, 2010
- S. D. Kelly et al., *Analysis of Soils and Minerals Using X-ray Absorption Spectroscopy*, Book Chapter, Soil Science Society of America Book Series No. 5, 2008
- C.S. Schnohr, M.C. Ridgway, *X-ray Absorption Spectroscopy of Semiconductors*, Springer, 2015

<u>Internet</u>

http://www.ixasportal.net/ixas/

→ <u>http://www.ixasportal.net/wiki/doku.php</u>

http://xafs.org/

Contents – Part I

Basic principle

XANES

EXAFS

Summary

INSTITUT FÜR FESTKÖRPERPHYSIK - FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Basic principle

X-ray absorption

Basic principle Fermi's Golden Rule

final state f

transition probability:

$$\mu \propto \left| \left\langle f \left| H_{X-ray} \right| i \right\rangle \right|^2 \rho(E_f)$$

matrix element M_{if} density of states

Basic principle

Characteristics of XAS

photon energy

fine structure of a particular absorption edge

→ element-specific

short range probe (~ 10 Å)

→ no long-range order needed

instantaneous configuration around the absorber

→ correlated motion

Contents – Part I

XANES

EXAFS

Summary

INSTITUT FÜR FESTKÖRPERPHYSIK - FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Characteristics

Chemical bonding

Fe K-edge of Fe oxides and Fe metal

valence state of the absorber

&

number and kind of nearest neighbours

position and shape of edge region

Newville, Fundamentals of XAFS www.xafs.org/Tutorials

XANES \rightarrow density of states, chemical bonding, valence state

4

Structure

Ge K-edge of Ge

XANES \rightarrow crystal or cluster symmetry

Contents – Part I

EXAFS

Summary

INSTITUT FÜR FESTKÖRPERPHYSIK - FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Characteristics

Structural parameters

EXAFS measures instantaneous configuration thermal vibrations & static disorder

 \rightarrow distance distribution

parameters

mean value (d)

 \rightarrow average distance, i.e. bond length

standard deviation (σ)

 \rightarrow variation of distances

asymmetry (C3)

→ excess of shorter or longer distances

EXAFS

Bond lengths

- \rightarrow In-As and Ga-As bond lengths are very different from average III-As distance
- local atomic arrangements deviate from crystallographic structure \rightarrow

EXAFS → element-specific bond lengths

Coordination number and disorder

crystalline InP

amorphous InP

EXAFS → structural parameters of crystalline and disordered materials

15

Atomic vibrations

- \rightarrow bond stretching requires more energy than bond bending
- \rightarrow force constants for correlated motion

EXAFS \rightarrow relative vibrations of neighbouring atoms

Contents – Part I

Summary

Summary

XANES

photon energy

EXAFS

X-ray absorption spectroscopy (XAS)

- → structural analysis on sub-nm scale
- \rightarrow crystalline and disordered solids, liquids, ...
- \rightarrow element-specific

XANES

- \rightarrow density of states, chemical bonding
- \rightarrow crystal or cluster symmetry

EXAFS

- \rightarrow coordination number
- \rightarrow bond lengths
- \rightarrow static disorder
- \rightarrow atomic vibrations

absorption µ

SEMINAR FUB-03

Part I Basics of XAS

Part II Experimental aspects of XAS

Part III Applications of XAS to chalcopyrite and kesterite materials

Contents – Part II

X-ray sources

Experimental techniques

Sample preparation

Data analysis XANES

EXAFS

Summary

X-ray sources

Synchrotron radiation

continuous energy spectrum and high X-ray flux

→ synchrotron radiation

DESY, BESSY, ESRF, SLS, ...

but: application process limited number of samples long time scale

http://www.sync.monash.edu.au

<u>elements</u> Ti (Z=22) ... Ag (Z=47) ... Xe (Z=54) → K-edges Cs (Z=55) ... U (Z=92) → L-edges Sc (Z=21) and below → K-edges, but difficult

absorption length

Cu(In,Ga)Se2Cu K-edge8.979 keV~ 15 μ mJbulkIn K-edge27.940 keV~ 80 μ mtechnique

X-ray sources

XAS beamlines

Contents – Part II

Experimental techniques

Sample preparation

Data analysis XANES

EXAFS

Summary

Detection modes

Transmission sample ion ion chamber chamber

- \rightarrow bulk sensitive
- \rightarrow simple setup high quality data
- \rightarrow but samples must be:

concentrated thick (10...50 µm) uniform

NW10-A, Photon Factory, Japan

typically powder samples

Detection modes

- \rightarrow bulk sensitive
- → sophisticated detector limited count rate
- \rightarrow but samples can be:

diluted thin (≤ 2 µm) nonuniform

SuperXAS, SLS, Switzerland

 \rightarrow thin films, nanoparticles, ...

Detection modes

- → surface sensitive (~ 100 nm)
- → sophisticated detector ultra high vacuum

D1011, **MAX II**, Sweden www.maxlab.lu.se/node/458

→ suitable for light elements (soft X-ray regime)

but surface treatment of sample may be necessary

Specialized techniques - I

Grazing incidence XAS

reduced penetration depth

 \rightarrow highly surface sensitive (tens of nm)

Total external reflection XAS

penetration depth further reduced

 \rightarrow extremely surface sensitive (some nm)

Polarization-dependent XAS

absorption coefficient depends

- on X-ray polarization
- \rightarrow structural parameters parallel and perpendicular to sample normal

InP

Specialized techniques - II

Diffraction anomalous fine structure (DAFS)

measures intensity of a particular Bragg reflection

as function of the X-ray energy

- \rightarrow same structural information as XAS
- \rightarrow can provide site or spatial selectivity e.g. In_xGa_{1-x}As layer on GaAs substrate

QuickXAS and energy-dispersive XAS

 \rightarrow time-resolved studies (s ... min)

MicroXAS

 \rightarrow spatially resolved studies (tens of nm ... µm)

Co-doped ZnO nanowire

Segura-Ruiz et al., Nano Lett. 11, 2011

but: all techniques require specialized setup and much experience

INSTITUT FÜR FESTKÖRPERPHYSIK - FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Contents – Part II

Experimental techniques

Sample preparation

Data analysis XANES EXAFS

Summary

Sample preparation

powders

grinding and dilution with binder, e.g. BN, graphite or cellulose \rightarrow ball mill or mortar

pressing into pellets or sample holder or dispersion on tape

thin films

measure as-grown on substrate or lifted off on tape alternatively: scrape off and process as powder sample

many more options for other types of samples ...

INSTITUT FÜR FESTKÖRPERPHYSIK - FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Contents – Part II

Experimental techniques

Sample preparation

Data analysis XANES

EXAFS

Summary

XANES analysis

Normalization

\rightarrow possible to compare spectra of different samples

31

XANES analysis

Linear combination fitting

comparison of measured spectra to those of known standards

→ linear combination fitting

but: existence and measurement of suitable standards is crucial

XANES analysis

Theoretical calculations

calculation of theoretical spectra

computer code FEFF Rehr et al. http://www.feffproject.org/

e.g. from density functional theory (DFT)

comparison of calculated with measured spectra

 \rightarrow acceptance or rejection of structural models

Fons et al., PRL 96, 2006

but: complicated and accuracy is sometimes limited

INSTITUT FÜR FESTKÖRPERPHYSIK - FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

33
Contents – Part II

Experimental techniques

Sample preparation

EXAFS

Summary

Data processing

background subtraction \rightarrow isolated fine structure

energy scale is converted to photoelectron wave number $k = \sqrt{2m_e(E - E_B)}/\hbar$

Data processing

Fourier transformation (FT)

→ visualization of different scattering contributions

→ analysis of different scattering contributions

Ratio Method

analysis of difference between unknown sample and known reference

amplitude:

$$\ln \left| \frac{A_s(k)}{A_r(k)} \right| = C - 2k^2(\sigma_s^2 - \sigma_r^2) + \dots$$

phase:

$$\Phi_s(k) - \Phi_r(k) = 2k(R'_s - R'_r) - \dots$$

→ no structural model needed but: limited to first shell requires suitable reference

Path fitting

refinement of structural parameters by fitting calculated to measured spectra

- → analysis of mixed and higher shells no reference material needed
 - but: requires structural model

IFEFFIT software package: ARTEMIS

Newville & Ravel http://cars9.uchicago.edu/ifeffit

Contents – Part II

Experimental techniques

Sample preparation

Data analysis 🧹 XANES EXAFS

Summary

Summary

XAS measurements

- \rightarrow synchrotron radiation
- \rightarrow transmission, fluorescence or electron yield mode
- → specialized techniques
- \rightarrow powders, thin films, ...

analysis

- XANES \rightarrow data normalization
 - \rightarrow linear combination fitting
 - \rightarrow theoretical calculations
- EXAFS \rightarrow data processing
 - \rightarrow Ratio Method
 - \rightarrow path fitting

Part I Basics of XAS

Part II Experimental aspects of XAS

Part III Applications of XAS to chalcopyrite and kesterite materials

Contents – Part III

Chalcopyrites

Atomic-scale structure and band gap bowing Local versus global electronic properties Cu content and Cu-poor phases

Kesterites

Secondary phases Cation disorder Atomic-scale structure

Conclusions

Crystal structure

thin film solar cells with record efficiencies above 20 %

on glass and polymer foils

Chalcopyrite structure

Jackson et al., PPRA 19, 2011 Chirila et al., Nature Mat. 12, 2013

space group I42d

a and c change linearly with In/III (Vegard's Law)

anion (Se) displacement

CuGaSe₂ $d_{Cu-Se} \sim d_{Ga-Se} \rightarrow Se \text{ not displaced}$ **CulnSe₂** $d_{Cu-Se} < d_{In-Se} \rightarrow Se displaced$

 $Cu(In,Ga)Se_2 \rightarrow Se position ?$

Anion displacement and band gap

43

Element-specific bond lengths

- → distinctly different and nearly constant
- → average III-Se distance matches diffraction results

Schnohr et al., PRB 85, 2012

→ same bond lengths for powders and thin films

Schnohr et al., TSF, 2014

→ short-range atomic arrangements deviate significantly from long-range crystallographic structure

typical for tetrahedrally coordinated semiconductors

Schnohr et al., PRB 78, 2008

Anion displacement

45

Band gap bowing

Schnohr et al., PRB 85, 2012

 $\Delta E_a^{Cu-III} = 20 eV \cdot \langle u \rangle_{nl}$

Vidal et al., PRL 104, 2010

$$\Delta E_g^{In-Ga} = 1.5 eV \cdot \langle \delta \rangle$$

Schnohr, JPCM 24, 2012

three sources

Wei & Zunger,

- → volume deformation
- \rightarrow charge redistribution
- \rightarrow anion relaxation

Bernard & Zunger., PRB 36, 1987

atomic-scale structure strongly influences material properties

→ similar results for Cu(In,Ga)S₂

Eckner et al., APL 103, 2013

INSTITUT FÜR FESTKÖRPERPHYSIK - FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Contents – Part III

Chalcopyrites

Atomic-scale structure and band gap bowing Local versus global electronic properties Cu content and Cu-poor phases

Kesterites

Secondary phases Cation disorder Atomic-scale structure

Conclusions

Cu(In,Ga)S₂ XANES

Johnson et al. JES 190, 2013

Density of states

ab initio DFT-based calculations

using hybrid functionals and special quasi-random structures

Sarmiento-Pérez et al., JAP 116, 2014

→ projected partial density of states (pDOS) corresponding to unoccupied states probed by XANES

 $\begin{array}{c} \mathsf{S} \rightarrow \mathsf{edge \ shifts} \\ \mathsf{Ga, \ In, \ Cu} \rightarrow \mathsf{no \ shift} \end{array}$

despite change in band gap cation edges don't shift \rightarrow Why?

Local atomic environment

 \rightarrow local environment around S changes

Sarmiento-Pérez et al., JAP 116, 2014

→ local environment determines local electronic states change in band gap due to changing spatial average

Contents – Part III

Chalcopyrites

Atomic-scale structure and band gap bowing Local versus global electronic properties Cu content and Cu-poor phases

Kesterites

Secondary phases Cation disorder Atomic-scale structure

Conclusions

CulnSe₂ ... Culn₅Se₈ XANES

no change

Cu poor phases

different crystal structures but still tetrahedral coordination

- \rightarrow each In or Cu has four Se neighbours bond lengths are similar for all compounds
- \rightarrow each Se has Cu, In and vacancy neighbours ratio strongly changes for different compounds

Yamazoe et al., JMR 26, 2011

strong change

CulnSe₂ ... Culn₅Se₈

Element-specific bond lengths

 \rightarrow mostly constant for 0.8 \leq Cu/In \leq 1.0, i.e. chalcopyrite range

 \rightarrow small increase or decrease for Cu/In \leq 0.8

but: partly contradicting results and only Cu-In-Se system

 \rightarrow detailed study of Cu(In,Ga)₃Se₅ and Cu(In,Ga)₅Se₈

Bond length variation

Schnohr et al., TSF, 2014

powders

- → Cu-Se ≥ Ga-Se ≥ In-Se bond stretching force constants
- → increase with decreasing Cu/III increasing amount of defects

thin films

→ Ga-Se and In-Se smaller than powders especially for low Cu/III different Cu history, i.e. Cu-rich state during co-evaporation

→ bond length variation depends on cation-anion pair and probably on Cu/III history during preparation

Contents – Part III

Chalcopyrites

Atomic-scale structure and band gap bowing Local versus global electronic properties Cu content and Cu-poor phases

Kesterites

Secondary phases

Cation disorder

Atomic-scale structure

Conclusions

Cu₂ZnSnS₄

Crystal structure

thin film solar cells made of earth-abundant and non-toxic elements record efficiency for Cu₂ZnSn(S,Se)₄ 12.6 % *Wang et al., AEM 4, 2014*

but: preparation often yields admixture of

- (a) secondary phases with different composition
 e.g. ZnS, CuS, SnS₂, ...
- (b) secondary phases with different crystal structure that features different cation ordering
 e.g. Stannite (space group I42m), ...

secondary phases affect electronic properties \rightarrow have to be avoided

Cu₂ZnSnS₄ XANES

admixture of ZnS to Cu₂ZnSnS₄ very difficult to detect with diffraction

- → different method needed
- S K-edge XANES spectra
- → distinctly different for Cu₂ZnSnS₄ and ZnS, CuS, SnS₂

quantitative determination of secondary phases, e.g. ZnS, by linear combination fitting

Cu₂ZnSnS₄

Amount of ZnS secondary phase

Just et al., APL 99, 2011

→ amount of ZnS increases for decreasing Sn/Zn ratio

→ efficiency decreases for increasing amount of ZnS

Contents – Part III

Chalcopyrites

Atomic-scale structure and band gap bowing Local versus global electronic properties Cu content and Cu-poor phases

Kesterites

Secondary phases

Cation disorder

Atomic-scale structure

Conclusions

Cu₂ZnSnS₄

Cation disorder

nanoparticle synthesis Zillner et al., APL 102, 2013 $Cu_2SnS_3 + ZnS \rightarrow Cu_2ZnSnS_4$

→ cation distribution ?

calculation of S K-edge XANES for different cation distributions

- → cannot distinguish Cu and Zn
- → but is sensitive to Sn-Cu/Zn antisites and Sn vacancies

→ cation distribution depending on synthesis and/or treatment

nanoparticles

Contents – Part III

Chalcopyrites

Atomic-scale structure and band gap bowing Local versus global electronic properties Cu content and Cu-poor phases

Kesterites

Secondary phases Cation disorder Atomic-scale structure

Conclusions

Cu₂(Zn,Fe)SnS₄

Element-specific bond length

Cu-S and Fe-S bond lengths

- \rightarrow different from each other
- \rightarrow different slope with Fe/II
 - \rightarrow different behaviour than chalcopyrites
 - \rightarrow detailed study of mixed kesterites influence of atomic-scale structure on band gap

Zalewski et al., JAC 492, 2010

Contents – Part III

Chalcopyrites

Atomic-scale structure and band gap bowing Local versus global electronic properties Cu content and Cu-poor phases

Kesterites

Secondary phases Cation disorder 🧹 Atomic-scale structure

Conclusions

Conclusions

INSTITUT FÜR FESTKÖRPERPHYSIK - FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Basics of XAS

XANES

photon energy

EXAFS

X-ray absorption spectroscopy (XAS)

- → structural analysis on sub-nm scale
- \rightarrow crystalline and disordered solids, liquids, ...
- → element-specific

XANES

- → density of states, chemical bonding
- → crystal or cluster symmetry

<u>EXAFS</u>

- → coordination number
- \rightarrow bond lengths
- \rightarrow static disorder
- \rightarrow atomic vibrations

In

bsorption µ

Experimental aspects

XAS measurements

- \rightarrow synchrotron radiation
- \rightarrow transmission, fluorescence or electron yield mode
- → specialized techniques
- \rightarrow powders, thin films, ...

analysis

- XANES \rightarrow data normalization
 - \rightarrow linear combination fitting
 - \rightarrow theoretical calculations
- EXAFS \rightarrow data processing
 - \rightarrow Ratio Method
 - \rightarrow path fitting

Chalcopyrites

Chalcopyrites

electronic states

- → local states determined by local environment
- → global properties like band gap arise from spatial average

bond length variation

- \rightarrow depends on cation-anion pair
- → different for powders and thin films
- → probably depends on Cu/III history during preparation

Kesterites

secondary phases

- → SK-edge XANES very different for Cu_2ZnSnS_4 and ZnS, CuS, SnS₂, ...
- → quantitative determination of secondary phase, e.g. ZnS

cation disorder

- → S K-edge XANES depends on cation distribution
- → Sn-Cu/Zn antisites and Sn vacancies

element-specific bond lengths

→ similarities but also differences to chalcopyrite materials for Cu₂(Zn,Fe)SnS₄

Absorption (normalized)

2460

Thank you !

SEMINAR FUB-03