The ICAT Roadmap & STFC activities

Catherine Jones for Stuart Pullinger
Software Engineering Group Leader
20th March, 2018
ICAT tool set

The ICAT software is

- **ICAT Metadata Catalogue**: implementation of data model
- **ICAT Data Service**: enables data retrieval from storage
- **TopCat Web interface**: location tool

Current technology: JavaEE; RDMS & AngularJS

Open Source project: http://icatproject.org
Status check

- Active ICAT community
- Requirements and technology change

Issues

- Metadata requirements for rich retrieval
- Interoperability
- User & admin friendliness
- Internal services
- Wider scientific environment

Technological choices impact on development

Strategic considerations lead to (draft) Roadmap
Roadmap: Four themes

- Securing Longevity
- Supporting Open Science
- Sustaining ICAT project
- Extending ICAT functionality
Securing Longevity

Longer term User Requirements

Gather and Review

Investigate other technologies

- Web frontend
- ReST API Refresh
- GraphQL
Supporting Open Science

- Activities that enable data held in ICATs to comply with FAIR principles
- Encourage discovery & effective reuse
- Remembering that experimental data not the only data for our users
Sustaining the ICAT Project

• Single to Multi-developer
 – Policies
 – Extending and enhancing automated testing
 – Metrics for code coverage
 – Docs & Web
Extending ICAT Functionality

• Key themes:
 • **SCHEMA changes**
 – Support data publication
 – Considerations for performance improvements
 • **Richer Metadata with existing constraints**
 – Going beyond key-value pairs
 – Allowing Arrays, hierarchies & JSON datatypes
Next steps

• Confirmation and prioritisation by Steering Committee
• Strategic focus on user requirements and landscape survey
STFC activities on DAaaS

Credit: Frazer Barnsley, Alastair Duncan & Brian Ritchie
DAaaS projects & related activities

• ICAT Job Portal
 – Enabling Octopus Facility (Lasers) to manage data and run HPC analysis jobs in a batch modes within ICAT functionality
 – Using Singularity containers on our local cluster for analysis

• Data/Publication linking
 – Capturing relationships between research objects.
 – Jupyter: investigating use as another entry point to DAaaS

• IDAaaS: Software, Compute & Data
 – Enabling ISIS users to analyse their data locally to the data, in a friendly fashion for non-computing experts:
 – Automated deployment analysis s/w from Jenkins
Analysis Environments

- Remote desktop to VMs
- Customised to specific types of analysis
- Ready to go instantly
- Pre / in / post experiment analysis
Create Analysis Environments

Excitations
This environment has been tailored for the analysis of inelastic neutron scattering data from the ISIS Excitations Group. It comes complete with Mantid, Matlab, Horace and MSlice as well as access to the ISIS Experiment Archive.

Excitations Large
This environment has been tailored for the analysis of inelastic neutron scattering data from the ISIS Excitations Group. It comes complete with Mantid, Matlab, Horace and MSlice as well as access to the ISIS Experiment Archive. This environment has been supplied with extra resources: 32GB RAM, 8 cores.

Muon
This environment has been setup to test the MuSRFit software.
Data available

Right analysis software
Virtual Machine Manager

Motivations

• Currently analysis environments only accessible through the TopCAT frontend
 – Open it up to other frontends

• Make use of resources at universities, other institutions, commercial clouds

• Bring ‘compute’ to the user / data
Requirements

• Provide API that allows clients to acquire different type analysis environments

• Cloud agnostic
 – Openstack, Azure ...

• Allow selection based on:
 – Location
 – Resources (CPU, RAM)
 – GPUs

• Fast – analysis environments available in seconds
Data Management Service

Motivations

- Simplify data access for users
DMS Requirements

- Filesystem view of data for the user
- Passive - independence of storage resources
- Scalable for large data volumes
- Transfers over long distances
Design

• 2 main parts
 – FUSE client
 – DMS service

• Plus GridFTP machines
Achievements

• Virtual Machine Manager
 • API, cloud abstraction layer, pool manager complete
 – On-going development on allocation logic
 – Basic functional tests run against Openstack

• Data Movement Service
 – Can handle ISIS experiment archive (read-only, shared data)
 – Private user data almost complete (home dirs)
 – To-do, shared private data (ACL rules)
 – Performance tuning

• On-going development to integrate with DAaaS
Contact details

- Stuart.pullinger@stfc.ac.uk : ICAT Project Manager
- Frazer.Barnsley@stfc.ac.uk : DAaaS Technical Lead
- Catherine.jones@stfc.ac.uk : Software Engineering Group Leader