METALIZATION – PLATING AND OTHER

Markus Glatthaar, Mathias Kamp, Andrew Mondon, Sven Kluska, Gisela Cimiotti, Jonas Bartsch

Hercules Workshop

Konstanz, March 27, 2015
Metal Contact Deposition Techniques
Printing Metal Pastes

- Today’s dominating technology for solar cell metallization
 - Feasibility for large scale production proven
 - Technological advances due to world-wide R&D activities

- Common high temperature approach requires glass frit for liquid phase sintering and adhesion on substrate
 - Glass layer partly covers contact area → high contact resistance
 - Glass frit usually contains Pb → Pb should be banned

- Low temperature approach for Hetero requires organic binder
 - Low conductivity → increased silver consumption

- **Silver is difficult to replace for low and high temp. approach because of its very special properties**
Metal Contact Deposition Techniques
Physical Vapor Deposition (PVD)

- Allows use of cheap materials (Ti, Al)
- Applied in micro electronics or optical disk manufacturing
- In-situ contact/silicide formation promoted by high particle energy
 - Excellent contact resistance
 - Good adhesion if chemical bonds are formed
- Extra patterning steps for grid definition on front-side necessary
- High invest and maintenance costs?

→ Mainly interesting for rear side metallization
Metal Contact Deposition Techniques

Plated Contacts

- Allows use of cheap materials (Ni, Cu, Sn)
- Low contact resistance can be reached (similar to PVD)
- But low deposition energy can hinder chemical bonding and electrical contact formation through native oxide
- Patterning steps for grid definition necessary
- Conductive layer necessary for electro-plating to spread electrical current
Plated Contacts for Al-BSF or PERC Solar Cells

Patterning

- Laser-patterned dielectric used as deposition mask
- At present UV ps-pulsed laser gives best results concerning adhesion
Plated Contacts for Al-BSF or PERC Solar Cells

Plating

- Printed rear side used to spread current
- Light-induced plating
- Inline-tool similar to RENA-production tool
- Nickel seed layer as diffusion barrier
- Copper layer for lateral conductivity
- Silver capping layer to protect Cu from oxidation
Plated Contacts for Al-BSF or PERC Solar Cells

Results

- Finger width down to 20 µm demonstrated
- Excellent contact resistance for lightly doped emitters
- Sufficient adhesion and long term stability to pass related IEC-Tests
- Suitable for next generation PERC with $\eta > 22\%$

![Graph showing specific contact resistivity vs. surface doping density](image)

- Specific contact resistivity ρ_c ($\Omega \cdot \text{cm}^2$)
- Surface doping density (cm^{-3})

Theory
- Theory (Yu)

Literature
- Ag screen printing
 - Schubert 2006
 - Hörteis 2009
 - Cooper 2012
 - Shanmugam 2014
 - Werner 2014
 - Burrows 2013

This work
- LCO + Ni/Cu/Ag plating
 - Sample type A
 - Sample type B

![Image of finger width 20 µm](image)
Plated Contacts for IBC Solar Cells

Standard Process Flow

- PVD of seed-layer stack
- Printing of plating mask

- Plating metals stack for lateral conductivity

- Stripping of plating mask
- Etching of seed layer stack
Plated Contacts for IBC Solar Cells

Standard Process Flow

- Process applied in mass production (~ 1 GW/a by SunPower)
- Lead free, no or low Ag consumption
- Excellent contact properties with PVD Al
- But rather expensive process steps

Sketch from De Ceuster Patent, 2010
Plated Contacts for IBC Solar Cells

Zincate Process

- Cost for PVD-layers higher than for wet-chemical deposition
- PVD of only Al seed layer
- Chemical conditioning for plating via zincate process
 - NaOH etches native Oxide
 - Al-Atoms replaced by Zn-Atoms
- Plating of Ni, Cu and Sn with standard electrolytes

Plated Contacts for IBC Solar Cells

Zincate Process

- Process demonstrated on large area
- Peel force of up to 7 N/mm reached → exceeds requirements of IEC
Plated Contacts for IBC Solar Cells

Electrochemical Patterning

- Stripping of organic plating resist causes high costs for waste-water treatment

- Electrochemical patterning of Al-surface by local anodization
Plated Contacts for IBC Solar Cells

Electrochemical Patterning

- Dispensing system for patterning
- Adapted electrolyte as ink
- Voltage applied between nozzle and substrate

➢ Thick Al₂O₃-layer is formed, that is not removed in zincate process
Plated Contacts for IBC Solar Cells

Simplified Metallization Process

- Electrochemical patterning of Al-layer
- Surface treatment with zincate process
- Plating for lateral conductivity
- Etching of residual Al for contact separation
Plated Contacts for Silicon Hetero-Junction Solar Cells

Negative Masking

- ITO is a good diffusion barrier for Cu
- Ni and Cu plate on ITO

- Patterning techniques for grid deposition by applying negative mask
 - Photo lithography (CSEM)
 - Inkjet-printed resist (OTB)
 - Laser patterned resist (SERIS/ISE)
 - ...

- Silevo/SolarCity claims to start mass production (1 GW/a) with such process
- Concerns about costs!
Plated Contacts for Silicon Hetero-Junction Solar Cells

Positive Masking

- No plating on certain TCOs or even metals observed
- Theses TCOs or metals can be electrically contacted by printed seed layer
 - Grid can be defined by printed seed layer on suitable TCO layer
Plated Contacts for Silicon Hetero-Junction Solar Cells

Positive Masking

- Proof of principle given on standard ITO with printed silver seed layer (CSEM solar cells)

ToDo:

- Mechanism for selectivity of plating process need to be investigated
 - Avoid parasitic plating
 - Increase plating speed

- Tailor ITO properties

- Use of different TCOs

- Check edge isolation
Conclusion

- Plating on Al-BSF or PERC solar cells mature to start integration into production
- Plated front side highly promising for next generation PERC with >22% without use of Ag or Pb
- Plating already applied in industrial IBC solar cell production
- Cost reduction potential by simplified process sequence
- Plating on silicon hetero-junction solar cells very interesting
- Best masking technology not identified yet