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PV Module Production Development by Technology 
It is still silicon … 

 Production 2015 (GWp) 

 Thin film  4.2 

 Multi-Si   43.9 

 Mono-Si  15.1 

   

Data: from 2000 to 2010: Navigant; from 2011: IHS (Mono-/Multi- proportion from cell production). Graph: PSE AG 2016 



© Fraunhofer ISE, M.Hermle 2016 
 

3 

SILICON SOLAR CELLS – CURRENT 
PRODUCTION AND FUTURE CONCEPTS 

 PAST 

 The early days in the Bell labs 

 Increasing efficiencies and the battle between materials 

 PRESENT 

 Current production of silicon solar cells 

 Surviving in the days of overcapacity 

 New cell types 

 FUTURE 

 A new generation of silicon solar cells 
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PAST 
The Bell Labs 1954 

Cross section of the first cell: 
- Arsenic-doped n-type base 
- Boron-diffused emitter 
- Back contact structure 

The first publication in Journal of 
Applied Physics: 
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PAST  
The Beginning 

 Strong increase of 
efficiency in the 
1950s 

 n-type silicon 
dominates as base 
material  
 
 

 
 
 
 
 
 
 

 
 
 

29.4% 
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PAST 
The First Application  Space 

 1957 Sputnik (USSR) 
 

 1958 Explorer 1 (USA) 
 

 1958 Vanguard 
First solar-powered 
satellite 

Sputnik 1 

Vanguard 1 
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PAST 
From n-type to p-type  

 Switch to p-type 
silicon due to 
higher radiation 
stability for space 
applications 

 Reduction of 
recombination 
losses 

 Model for current 
industrial cell 
generation 
 
 
 

 
 
 
 
 
 
 

 
 
 

29.4% 

Small area 
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PAST 
From Space to Earth 
Niche Markets 
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PRESENT 
Grid-connected Mass Market 

 

Picture: Phoenix 
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PRESENT  
Screen-printed Al-BSF solar cell on p-type silicon 
 

Saw 
Damage 
Removal 

Texture + 
Cleaning Diffusion 

PSG 
Removal 
and 
Isolation ARC 

Screen-
printing Firing 

 Process 

n-Emitter 

ARC 

p-Base 

p-Contact 

n-Contact 

pn-
Junction 

Al-BSF 

 Still the main 
technology of the  
PV technology  
(> 60 % of the market) 

 Efficiency up to 20 % 
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PRESENT  
The main driver of PV technology   the working horse 
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 Share of Balance of 
System costs (BOS) 
increases from 31 % 
in 2006 to now 
about 52 %  

 Large fraction of 
system cost scale 
with the solar cell 
efficiency 

 

  

Present 
Average Price for PV Rooftop Systems in Germany 

  High efficient solar cells 
reduces your system cost 

 BOS incl. Inverter 

  

Modules  

Data: BSW-Solar. Graph: PSE AG 2016 

©Fraunhofer ISE: Photovoltaics Report, updated: 21 November 2016 
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Why Going to High Efficiencies? 
Levelized Cost of Electricity (LCOE) 

 
 

  What really matters are the Levelized Cost of 
Electricity (LCOE) 

 To rate new solar cell concepts, they have to be 
compared with the LCOE of the p-type mc Al-BSF 
cell 

 

 Reference system:   

 p-type mc Al-BSF cell  
(> 60 % of total PV production) 

 Cell efficiency 18.5 %  

 900 kWh/kWp, 25 years 

 

 LCOE<10 €ct/kWh 

 

 

 

 

SDE/Texture 

POCl diffusion 

Edge Isolation 

PSG etching 

SiN ARC 

SP Ag FS 

Drying & Firing 

SP Al/Ag RS 
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Why Going to High Efficiencies? 
Efficiency versus Cost 

 Calculation of 
additional costs in cell 
production to get the 
same LCOE with 
simplified model: 
Allowable system 
costs (except 
inverter) scale with 
efficiency 

 Rule of thumb: 

 1 % gain in η 

 ~ + 25 % cell 
processing costs  

 

+25 % 

19.5 % 

Higher LCOE 

Lower LCOE 

More detailed model:  S.Nold et al. , EUPVSEC 2012 
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PRESENT 
Price trend for Silicon Wafer: mc versus Cz Silicon  

 Price difference between 
Mono and Multi strongly 
increased in 2016 

 CoO for cell production of Al-
BSF cells less than 45 $ct/cell 

 Efficiency difference can 
currently not compensate the 
cost difference in wafer  

Wafer 
01/16 

[$] 
10/16 

[$] 

156 mm Multi 
Solar Wafer  

0.89 0.52 

156 mm Mono 
Solar Wafer  

0.9 0.65 

Difference 0.01  0.13 

www.pvinsights.com 
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PRESENT 
Price trend for Silicon Modules 

 Strong decrease in module 
price the last 10 month 

 Overcappacity  lead to a 
strong price reduction 

 

 

 

Origin of Module € / Wp 

Trend 
since 
January  
2016 

Germany 0.53 -10,17 % 

Japan, Korea 0.63 -4,55 % 

China 0.51 -8,93 % 

South Asia , Taiwan 0.47 -2,08 % 

www.pvxchange.com 

 

Challenges for the future 

 Higher efficiencies 

 No significant increase of 
production costs 

 Scale 
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PRESENT 
Large-area Record Cells on n-type Silicon 

http://www.nedo.go.jp/english/news/AA
5en_100109.html  

 Kaneka shows 
efficiency 
breakthrough 
for silicon solar 
cells 

 26.33 %  n-type 
IBC solar cell 
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PRESENT 
The Return of n-type Silicon 

 Large-area record 
cells are all n Type 
IBC solar cells 
(Kaneka,Sunpower, 
Sanyo/Panasonic) 

 Extremely high 
lifetimes needed  
(>> 1 ms) 

 The return of  
n-type silicon ?  
 
 

 
 
 
 
 
 
 

 
 
 

29.4% 

Large area 

Small area 
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PRESENT  
n-type BJ-BC cell with Passivated Contacts   
 the racehorse 
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PRESENT   
Bridging the Gap 

p
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y
p
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F 

 

IBC 
passivated 
contacts 

???? 

 Can such cell realized 
without a significant 
increase of production 
costs ? 

 

 

 

 

 

 

 

 

 M. Hermle et. al., 29th EUPVSC 2014. 
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 Which technologies will 
go into the gap ? 

 Bridging the gap: 
- Higher efficiency 
- Reasonable 
complexity 
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produced by vertically integrated PV cell  and module manufacturers; Graph: Jochen Rentsch, Fraunhofer ISE. Source: Company product data sheets. Last update: Nov. 2015. 

Current Efficiencies of Selected Commercial PV Modules 
Sorted by Bulk Material, Cell Concept and Efficiency 
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PRESENT 
The Next Industrial Cell Generation: PRC Cells 

 Replacement of the full area 
Al-BSF with  partial rear 
contacts (PRC) 

 Two additional process steps  

 Dielectric passivation 

 Local contact opening 
(LCO) or Laser fired 
contact (LFC) 

 Advantage:  

 Excising lines can be 
upgraded 

 Can be used for mc und 
Cz silicon 

 

SDE/Texture 

POCl diffusion 

Edge Isolation 

PSG etching 

SiN ARC 

SP Ag FS 

Drying & Firing 

SP Al/Ag RS 

Al2O3/ SiN RS 

Laser Opening 
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PRESENT 
The Next Industrial Cell Generation: PRC Cells 

 PERC is currently 
replacing the Al-BSF cells 
(25 years after its 
invention!) 

 Record industrial results: 

 p-type mono-Si: 
22.1% (Trina) 
22.0% (Solar World) 

 p-type multi-Si 
21.25% (Trina) 
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PRESENT 
The Next Industrial Cell Generation: PRC Cells 

 Degradation mechanism limiting 
industrial efficiency  

 Cz-Silicon: Boron Oxygen defect limits 
liftime 

 Regeneration can be used to 
recover the material2 

 mc-Silicon: Light and elevated 
Temperature Induced Degradation 
(LeTID) 1 

 

1S.Kersten et al. Solar Energy Materials and Solar Cells Volume 142, Pages 83–86 
2S. Wilking et al EU-PVSEC 2014 
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PRESENT 
The Next Industrial Cell Generation: Heterojunction  

 Lean process flow 

 Highly efficient carrier 
selective contacts 

 High Voc and low Tk 

 High efficiencies for thin 
wafers 

from: D.Bätzner Silicon PV  2014 

Texture 

TCO front 

Curing  

SP Ag VS 

i/p-a-Si 

i/n-a-Si 

TCO rear 

PVD Al rear 

Cleaning 
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PRESENT 
The Next Industrial Cell Generation: Heterojunction?  

 Record efficiency for 
both side contacted 
HJ Solar cells 25.1 % 
from Kaneka 

 Pilot line results form 
MEYER BURGER  

 

from: T. Söderström, Metalliszation Workshop  2016 
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PRESENT 
Alternative passivated contacts 

Tunnel oxide 

EC 
EF 

EV 

EC 
EF 

EV 

 a-Si(i)/a-Si(n) Hetero 

 Excellent selectivity 

 Low thermal stability 

n-Si Base Polycrystalline 
Si(n)-Layer 

n-Si Base Amorphous 
Si(n)-Layer 

 Tunnel oxide/Polysilicon  

 Excellent selectivity 

 Better thermal stability 

 
F. Lindholm et al, IEEE Electron Device Letters, (1985) 

J. Y. Gan and R. M. Swanson, 22nd IEEE PVSC, (1990). 

Post et al., IEEE TED (1992) 
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TOPCon process 

 Tunnel oxide  
(wet chemical or UV/O3 growth) 
 Interface passivation 

 PECVD deposition (single side)  of 
doped amorphous Si layer 
 Carrier selectivity 

 Furnace Anneal + H-passivation 
 Change of layer crystallinity 
(band gap) 

PRESENT 
Alternative passivated contacts 
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F. Feldmann et al.,  SOLMAT 120 (2014) 
U. Römer, et al. IEEE Journal of Photovoltaics (2015) 
D. Yan  Solar Energy Materials and Solar Cells (2015) 
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a-/nc-Si 

PRESENT 
Alternative passivated contacts 

F. Feldmann et al.,  SOLMAT 120 (2014) 

U. Römer, et al. IEEE Journal of Photovoltaics (2015) 

D. Yan  Solar Energy Materials and Solar Cells (2015) 
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PRESENT 
n-Type Hybrid TOPCon Cell – Reducing the Complexity 

J0,met = J0,pass 

n-base 

p+ 

passivated contact 

 n-type hybrid cell with boron 
emitter at the front and a 
passivated rear side offers 

1. transparent front side 

2. less influence of base 
resistivity 

3. no patterning of the rear 
side 
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High-Efficiency Solar Cells 
Record Cells with Top/Rear Contacts 

 

 

 

 

 

 

  Material Voc Jsc FF η 
  [mV] [mA/cm2] [%] [%] 

UNSW/PERL1 p-type 400 µm 706 42.7 82.8 25.01 

1 4 cm2 (da), Zhao et al., Progr. Photovolt. 7 (1999) 
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High-Efficiency Solar Cells 
Record Cells with Top/Rear Contacts 

 

 

 

 

 

 

1 4 cm2 (da), Zhao et al., Progr. Photovolt. 7 (1999) 
2 151,88 cm2 (ap), Yamamoto K, et al., 25th PVSC (2015) 

  Material Voc Jsc FF η 
  [mV] [mA/cm2] [%] [%] 

UNSW/PERL1 p-type 400 µm 706 42.7 82.8 25.0 

Kaneka/ HJT2 n-type 200 µm 737 40.8 83.5 25.1 
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High-Efficiency Solar Cells 
Record Cells with Top/Rear Contacts 

 

 

 

 

 

 

  Material Voc Jsc FF η 
  [mV] [mA/cm2] [%] [%] 

UNSW/PERL1 p-type 400 µm 706 42.7 82.8 25.0 

Kaneka/ HJT2 n-type 200 µm 737 40.8 83.5 25.1 

ISE / TOPCon3 n-type 200 µm 718 42.5 82.8 25.3 

J0e,pass �  11-15 fA/cm² 
J0e,metal �  200 fA/cm² 

TOPCon: J0,rear �  7 fA/cm² 

n-base 
p++ 

1 4 cm2 (da), Zhao et al., Progr. Photovolt. 7 (1999) 
2 151,88 cm2 (ap), Yamamoto K, et al., 25th PVSEC (2015) 
3 4 cm2 (da), Richter A. et al., 26th PVSEC (2016) 
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PRESENT   
Bridging the Gap 
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IBC 
passivated 
contacts 

 

 Both side cells  will 
further dominate the 
market 

 PERC cells will replace 
the Al-BSF cells 

 Cells with passivated 
contacts can come 
into the gap 
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 They can have  

 Higher efficiency 

 with reasonable 
complexity 
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FUTURE 
Beyond the Limit 
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FUTURE 
What is the Limit of Silicon Solar Cells 

 Shockley, Queisser (1961) 
Limit for Si  33% (AM1.5) 

 Limitations by 
thermalization and 
transmission 
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FUTURE 
Taking Auger Recombination into Account 

 Shockley, Queisser (1961) 
= 33% (AM1.5) 

 Theoretical efficiency limit 
for silicon (incl. Auger) 
= 29.4%1 

 Best silicon solar cells 
= 26.33% 

 Corresponds to 88% of 
theoretical efficiency limit 
 

1Richter, Glunz et al., Phys. Rev. B 86 (2013) 
2Richter, Hermle, Glunz, IEEE J. Photovolt. (2013) 
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FUTURE 
Beyond the Shockley-Queisser-Limit 

 Light management  

 Up-conversion 

 Down-conversion 

 Tandem cells with silicon as 
bottom cell 

 Perovskite top cell 

 III/V top cell 
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FUTURE 
Silicon-based Multijunction Cells 

Si (1.12 eV) 

GaAs (1.42 eV) 

GaInP (1.88 eV) 

 Top cells with high 
bandgap to utilize blue 
and visible light 

 c-Si bottom cells for IR 
light 

 Deposition by direct 
epitaxial growth or 
wafer bonding 
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Beyond the Limit 
Silicon-based Multijunction Cells 

GaInP pn-junction 

GaAs pn-junction 

Si bottom cell 

III-V Substrate 

Bonding to new 
substrate 

III-V substrate lift-off 
and recycling 
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Beyond the Limit 
Silicon-based Multijunction Cells 

GaInP pn-junction 

GaAs pn-junction 

Si bottom cell 

Processing of solar 
cell contacts and 
ARC 

5-10 µm 



© Fraunhofer ISE, M.Hermle 2016 
 

42 

10 nm Silicon- cell 
or wafer 

  GaAs- cell 

High Resolution TEM Image, Bright Field, Zone Axis Si, Universität Kiel, Group  Prof. Dr. Jäger, 2011 

HRTEM-image of Si/GaAs interface 
  4 nm thick amorphous layer 

Beyond the Limit 
2-terminal GaInP/AlGaAs//Si 

  GaInP- cell 

1 µm 

GaAs 

Silicon 
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Beyond the Limit 
2-terminal GaInP/AlGaAs//Si 
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Schockley Queisser efficiency limit of 47.3 % (AM1.5g) 
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Beyond the Limit 
2-terminal GaInP/AlGaAs//Si 

 Efficient utilization of 
spectrum 

 Very good current matching 
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Beyond the Limit 
2-terminal GaInP/AlGaAs//Si >30% @1-Sun AM1.5g 
 
 
 Efficient utilization of 

spectrum 

 Very good current matching 

 Efficiency = 30.2 > 29.4%  

 

 

https://www.ise.fraunhofer.de/de/presse-und-
medien/presseinformationen/presseinformationen-2016/30-2-prozent-2013-neuer-
rekordwert-fuer-siliciumbasierte-mehrfachsolarzelle 
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Conclusion 

 Photovoltaics is a significant 
player in the energy market. 

 Prices are already very low.  
Conversion efficiency is the key 
to further bring down the 
levelized costs of electricity and 
to survive competition. 

 New cell structures with high 
industrial potential. 

 New fascinating concepts for 
an old technology: 
Crystalline silicon solar cells 2.0 

 

 

Si (1.12 eV) 

GaAs (1.42 eV) 

GaInP (1.88 eV) 
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