module integration for back contact back junction solar cells

Andreas Halm¹, Bart de Gier², Valentin D. Mihailetchi¹, Haifeng Chu¹, Giuseppe Galbiati¹, Razvan Roescu¹, Joris Libal¹, Radovan Kopecek¹, Nico van Ommen², Andreas Schneider¹

¹: International Solar Energy Research Center - ISC Konstanz
²: Eurotron BV
Introduction: IBC module

Advantages:
- highest power potential
- uniform optical appearance

Challenges:
- CTM losses
- interconnection method
Introduction: Zebra cell

- Low cost IBC cell
- Screen printed 3D metallization
- 6 inch n-type Cz wafer
- Bifacial IBC cell

- Front floating junction
- Industrial processes proven in PERC and PERT fabrication

» Current best efficiency: 22 %
Introduction: main CTM power losses

standard H-pattern cell

– electrical losses:
 • series resistance

– optical losses and gains:
 • absorption in glass and encapsulant layer
 • reflection at the interfaces
 • reflection from front metallization
 • reflection from backsheet

IBC cell

more liberty since all metal is on the rear side

thinner front encapsulation implementable

higher CTM loss in I_{SC}

increases I_{SC} for bifacial IBC cells
Introduction: interconnection issues

Contacting of both polarities in one plane:

- 3D metallization of Zebra cell

- electrical isolation on cell or module level needed

- compensation of mechanical stress for single sided contacting needed

H. Wirth, Fraunhofer ISE, 2nd MWT Workshop 2010, Amsterdam
Introduction: possible interconnection concepts

Classical way: adapted tabber-stringer

Edge stringing (Sunpower)

Continous stringing (e.g. ISC)

NICE
multi busbar
smartwire

new approaches: dedicated equipment

weaving

Conductive backsheet

many other great concepts……
Introduction: possible interconnection concepts

Classical way: adapted tabber-stringer

Continuous stringing (e.g. ISC)

New approaches: dedicated equipment

Conductive backsheet
Outline

- ribbon based Zebra modules
 - contacting scheme
 - bifacial module measurements
 - reliability

- Zebra modules assembled with conductive backsheets
 - device optimization
 - results on 60 cell modules
 - cost structure

- outlook and summary
ribbon based interconnection

advantages and challenges:

+ easy built-up for cells with asymmetric BB structure
+ existing technology with long term experience
+ bifaciality implementable
+ El inspection of string possible

- special upgrade for stringer needed
- bowing problem
ribbon based interconnection: contacting scheme

assembly process at ISC to overcome excessive bowing

a) soldering of stress relieved ribbon

+ long term stability
- high mechanical stress

b) gluing of electrically conductive adhesive (ECA)

+ low mechanical stress
- reliability?
ribbon based interconnection: performance

Both techniques yield similar results!

- choice of ribbon main factor for series resistance losses

best results so far:

<table>
<thead>
<tr>
<th>module</th>
<th>Voc (V)</th>
<th>Isc (A)</th>
<th>FF (%)</th>
<th>Pmpp (W)</th>
<th>Eta (%)</th>
<th>CTM power (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bifi module front side</td>
<td>2.65</td>
<td>9.85</td>
<td>76.8</td>
<td>20.0</td>
<td>20.2*</td>
<td>1.5</td>
</tr>
<tr>
<td>bifi module rear side</td>
<td>2.62</td>
<td>7.03</td>
<td>78.0</td>
<td>14.3</td>
<td>14.4*</td>
<td></td>
</tr>
</tbody>
</table>

bifi factor: P rear / P front = 0.71

*measured with black frame in 1 mm distance to edge cells
ribbon based interconnection: bifacial measurements

both side illuminated IV measurements on a one-cell-module:

bifaciality factor: $\frac{P_{\text{REAR}}}{P_{\text{FRONT}}} = 0.77$
TC 200 testing of soldered one-cell-modules:

![Graph showing relative power drop vs. ribbon type](image-url)
ribbon based interconnection: reliability

temperature cycle testing up to TC 1000 for ECA glued one-cell modules:
conductive backsheet (CBS) approach

- Pick and place: low stress on cell
- Cu backsheet: low R_{series}
- Small cell spacing
- Flexible rear design
- Proven in mass production

» Good candidate for fast transfer to industry
CBS: contact optimization with ECA

Contact resistance measurements:

Measured quantity:

\[R_{C\text{ system}} = R_{C1} + R_{C2} + R_{\text{Vol}}(h) \]

\(h \) : contact height
CBS: optimization of contact pattern

optimization on ECA layout: **points** versus **3mm lines**

-> quantity of contact points more significant than contact area
CBS: reliability

temperature cycle testing up to TC 1000:
CBS: 60-cell Zebra modules

Cell preparation at ISC Konstanz during Hercules pilot line experiment:

<table>
<thead>
<tr>
<th>Group</th>
<th>I_{MPP} (A)</th>
<th>P_{MPP} (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>A</td>
<td>9.18</td>
<td>0.016</td>
</tr>
<tr>
<td>B</td>
<td>9.13</td>
<td>0.016</td>
</tr>
<tr>
<td>C</td>
<td>9.07</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Module production at Eurotron’s competence center:

<table>
<thead>
<tr>
<th>Group</th>
<th>Isc (A)</th>
<th>Voc (V)</th>
<th>FF (%)</th>
<th>P_{MPP} (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module A</td>
<td>9.97</td>
<td>39.3</td>
<td>77.1</td>
<td>303</td>
</tr>
<tr>
<td>CTM (%)</td>
<td>-0.6</td>
<td>0.00</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Module B</td>
<td>9.94</td>
<td>39.2</td>
<td>76.5</td>
<td>298</td>
</tr>
<tr>
<td>CTM (%)</td>
<td>-0.7</td>
<td>-0.05</td>
<td>2.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Module C</td>
<td>9.84</td>
<td>39.1</td>
<td>76.3</td>
<td>294</td>
</tr>
<tr>
<td>CTM (%)</td>
<td>-0.6</td>
<td>0.04</td>
<td>2.3</td>
<td>1.8</td>
</tr>
</tbody>
</table>
CBS: certified module measurement

ISE Callab measurement:

<table>
<thead>
<tr>
<th>Module</th>
<th>I_{SC} (A)</th>
<th>V_{OC} (V)</th>
<th>FF (%)</th>
<th>P_{MPP} (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV @ Callab</td>
<td>B</td>
<td>9.94</td>
<td>39.24</td>
<td>76.5</td>
</tr>
</tbody>
</table>

Full area efficiency: 18.4%
Total aperture efficiency: 19.1%
CBS: Short term improvements

Calculated power increase with identical cell and module process:

<table>
<thead>
<tr>
<th>Module configuration</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current status</td>
<td>303</td>
</tr>
<tr>
<td>Use 22% cell efficiency instead of 21.4%</td>
<td>311</td>
</tr>
<tr>
<td>Introduce M2 wafers (now M0)</td>
<td>319</td>
</tr>
<tr>
<td>Increase cell spacing from 1.25 to 4 mm</td>
<td>322</td>
</tr>
</tbody>
</table>

Comparison to example high end c-Si modules on the market:

<table>
<thead>
<tr>
<th>Module</th>
<th>Technology</th>
<th>Area (m²)</th>
<th>Cells / Size</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SunPower</td>
<td>N IBC</td>
<td>1.66</td>
<td>96 / 5 inch</td>
<td>345</td>
</tr>
<tr>
<td>Zebra</td>
<td>N IBC</td>
<td>1.68</td>
<td>60 / 6 inch</td>
<td>322</td>
</tr>
<tr>
<td>Zebra</td>
<td>N IBC</td>
<td>1.62</td>
<td>60 / 6 inch</td>
<td>303</td>
</tr>
<tr>
<td>Yingli</td>
<td>N PERT</td>
<td>1.63</td>
<td>60 / 6 inch</td>
<td>300</td>
</tr>
<tr>
<td>Solarworld</td>
<td>P PERC</td>
<td>1.68</td>
<td>60 / 6 inch</td>
<td>295</td>
</tr>
<tr>
<td>Trina</td>
<td>P PERC</td>
<td>1.63</td>
<td>60 / 6 inch</td>
<td>290</td>
</tr>
</tbody>
</table>
CBS: CoO calculation

Cell efficiency: 20.5% 22%
Module power: 300 W 322 W

Δ = 4.5 ct /W

$0.46 $/W $0.55 $/W

Labor (cell)
Yield loss (cell)
Waste disposal (cell)
Utilities (cell)
Material/Consumables (cell)
Depreciation (cell)

module transformation cost (USD/Wp)

A. Halm, 2nd HERCULES workshop, Berlin, October 2016
Outlook: Zebra half cell module

<table>
<thead>
<tr>
<th></th>
<th>Isc (A)</th>
<th>Voc (V)</th>
<th>FF (%)</th>
<th>P_{MPP} (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module*</td>
<td>5.0</td>
<td>79.0</td>
<td>77.3</td>
<td>308</td>
</tr>
<tr>
<td>CTM (%)</td>
<td>-2.8</td>
<td>0.05</td>
<td>0.4</td>
<td>-3.2</td>
</tr>
</tbody>
</table>

* measured at EDF
Outlook: new concept

Bifacial conductive backsheets - proof of concept:

Transparent rear backsheets with copper tracks:

Bifacial Zebra module:

First prototype $P_{\text{front}} = 18.1 \text{ W}$, bifaciality factor $= 0.7$

(designed by ISC Konstanz produced by Coveme)
Outlook: outdoor performance 4 cell modules

Outdoor performance Zebra modules measured between 12-2015 and 05-2016

- bifi CBS: +11%
- std. CBS: 100%
- bifi ribbon: +21%
Summary

- ribbon interconnection possible for Zebra cells soldered or ECA glued
- bifacial 4-cell module with 20.2 % front efficiency and 71 % bifi factor
- Assembly of Zebra cell in conductive backsheet module possible
- 60-cell module with 303 W power output based on industrial cell and module processes and 308 W module with 120 half cells
- Short term improvements up to 322 W feasible with competitive cost structure
Acknowledgement

The project HERCULES has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 608498

Thank you for your attention!