

MWT Silicon Heterojunction

A Simple Technology Integrating High Performance Cell and Module Technologies

Dr. J.M. (Jan) Kroon
Hercules workshop, Berlin
11 October 2016

Content

- PV evolution according to ITRPV
- From Cell to Module
- ECN developments foil based back-contact cells and module technologies
 - Thin cells
 - Cost reduction of module materials
 - Outdoor test data
 - MWT-HJ cells and implications for modules
 - View towards applications
- Summary and Outlook

From standard to High η Si cell concepts

- From p- to n-type front to back contacted (PERT, HJ)
- From front to back contact to back contact (MWT,IBC)
- From monofacial to bifacial (> kWh/kWp)

N mono IBC N mono HJ

N mono PERC
P mono PERC
P monolike PERC
P multi PERC

ITRPV roadmap 2015

To be translated to High Power modules

- Products: 60 cells 156 mm
- Optimize CtM
- Low cost without sacrificing quality and reliability
- Long term reliability is crucial for stable growth

ITRPV roadmap 2015

▲ back contact cells n-type mono-Si

Expected market shares

Fig. 33: Worldwide market shares for different cell technologies.

Trends according to ITRPV roadmap:

- PERC concepts will become mainstream
- Back Contact and HJ concepts expected to increase for niche markets

How to adapt the module technology **ECN** so that it fits with a specific cell concept

Each cell concept has to be individually evaluated for the best module concept in terms of:

- Long term stability → >30 years product lifetime
- Lowest cell to module losses → CtM value
- Optimized production costs → high yields, low investment costs
- Optimized Bill of Materials (BoM)
- Best energy yield → temperature, low light, incident angle, shadow...

There are special requirements for individual concepts, a.o.

- IBC: soldering not trivial
- SHJ: low Temperature interconnection, barrier for moisture ingress
- Etc...

From cell to module.... different approaches

Standard

- Move to more busbars: 2,3,4,5
- No Busbars: Multiwire/smartwire (Schmid, MB)
- Shingling, cascading (Sunpower, Silevo)

Back Contact (MWT, IBC)

- Rear soldering (tabbing, woven fabrics, MW) (ISE, ir
- Smart tab edge interconnection (Sunpower)
- Foil interconnection technology (ECN, Eurotron,..)

Cell to module: Back Contact

MWT, IBC: foil

- Conductive back-sheet foil
 - Copper as conductive layer
 - Patterning by chemical etching or milling
- Contact cell to foil through conductive adhesive
 - Printed on foil
- Isolation cell from foil by encapsulant
 - Holes at contacts

Cell to module: Back Contact

- Reliability proven
 - IEC certification achieved
- Production equipment developed by Eurotron: high level of automisation
 - >300 Wp nMWT certified
 - >280 Wp IBC (120 micron cells, special BoM design for recycling)

Back Contact Module R&D at ECN

- BoM testing in mini pilot module line: 4 cells modules as scale model for large area module
 - Integration of (thin) BC cells from ECN cell baselines or other sources
 - Comparison of module materials and new processes
 - CtM power optimization by optical and electrical engineering
 - Reliability, outdoor testing
 - Special prototypes

Cu Coldspray on Al CBS

Cell-to-module change

 A paper is published in PV-International this month on CtM changes specifically for back-contact module technology

Positive cell-to-module change: Getting more power out of back-contact modules

Bas B. van Aken & Lenneke H. Slooff-Hoek, ECN - Solar Energy, Petten, The Netherlands

ABSTRACT

Cell-to-module (CtM) loss is the loss in power when a number of cells are interconnected and laminated in the creation of a PV module. These losses can be differentiated into *optical losses*, leading to a lower photogenerated current, and *resistive losses*, leading to a decrease in fill factor. However, since the application of anti-reflection (AR) coatings and other optical 'tricks' can sometimes increase the $I_{\rm sc}$ of the module with respect to the average cell $I_{\rm sc}$, the CtM loss in such cases needs to be expressed as a negative value, which gives rise to confusion. It is proposed to use the CtM change, where a negative value corresponds to a loss in current or power, and a positive value to a gain. In this paper, the CtM changes for back-contact modules utilizing a conductive foil are described and compared with other mature module technologies. A detailed analysis of the CtM change for a full-size metal-wrap-through (MWT) module is presented.

11

Handling of thin cells

- IBC cells down to 80 micron cells with adapted processing
- 4 cells mini modules have been fabricated: no breakage/cracks and FF > 74 %
- Cell handling down to 80 micron proven with industrial module equipment (Eurotron)

100 micron

80 micron

Automated handling with industrial equipment

Reduction cost conductive back-sheet foil

- Replacing copper by aluminium
- Local application of Copper powder by Cold-Spray on Al foil
- Conductive adhesive printed on the Copper pads: < 1 mOhm Rc
- Potential cost saving ~3 Euro per full size backsheet

Reduction cost conductive back-sheet foil

Performance MWT and IBC modules

Module	FF [%]
MWT on Cu	75.9
MWT on Al + CuCS	75.9
IBC on Cu	74.9
IBC on Al + CuCS	74.9

14

MWT Modules passed 3.5 x IEC test!
Similar trends observed for IBC after 1 x IEC

Reduction cost conductive adhesive

- Reduction silver content from >80% to <20%
- Reduction volume by using thinner encapsulants → Powder coating
- More contact points possible without cost penalty

Reduction cost conductive adhesive

Powder coating process

- Electrostatic deposition technique
- Large freedom to tune layer thickness
- Applied on solar cells and glass
- Cleaning contact pads (punching is eliminated)

Spray booth and controller

Contact point cleaner

Coated cell and clean contact points

Reduction cost conductive adhesive

 MWT modules with Thermoplastic powder coated encapsulant on solar cell and glass: process proven for 150-200micron

Encapsulant	Isc (A)	Voc (V)	FF (%)	Pm(W)
Powder coat	8.81	2.52	75.9	16.82
EVA ref	8.75	2.52	75.9	16.66

Challenge:

- Find right materials that with stand IEC testing
- Proof mechanical stability

Outdoor performance p-MWT module (2007-2016)

FF loss

- Electrical losses

Isc loss:

- No module cleaning

 $> Wp / m^2$

Back to cells.....

- MWT-SHJ combines advantages of silicon heterojunction (SHJ) and metal wrap through (MWT) technologies in one device:
 - SHJ shows record Voc and has a low temperature coefficient for higher module energy yield
 - MWT shows Ag cost reduction and less shading in a module
 - Module technology meet low T requirements by soldering-free

Front side metallization improvements

From low T Ag to

Structure	Front metal	J _{sc} [mA/cm ²] (shading)	V _{oc} [mV]	FF [%]	η [%]
H-pattern	Ag 3BB*	38.9 (5.6%)	722	77.3	21.7
MWT 4x4	Ag	39.1 (3.7%)	726	76.6	21.7
MWT 6x6	Ag	39.2 (3.4%)	723	77.6	22.0
MWT 6x6	Ag	39.3	719	80.0	22.6

Cu-plated, 6 x 6 vias (developed at CIC)

Coletti, EUPVSEC proc. 2016 Ishimura, EUPVSEC proc. 2016

Results MWT-HJ cells

Reverse characteristics

I rev < 0.5 A at -10 V for 4 x 4 and 6 x 6

Sensitivity towards illumination

Shunt and recombination behavior comparable to H pattern SHJ

From MWT HJ cell to module.....

Concept is ideally suited for conductive back sheet module technology as is IBC HJ

- Low Temperature interconnection
- Solder free

Challenges for glass / polymer back sheet modules

- Optimize CtM:
 - First trials with single cell laminates (next slides)
- Reliability: change and optimize BoM to cope with increased sensitivity towards moisture
 - Work in progress

From MWT HJ cell to module.....

CtM change of the fill factor for various interconnection schemes

- Only resistive losses in interconnection material: tabs, wires, foil
- the calculated power loss is inversely proportional to resistance and thus to the total cross-section of the interconnection material

Van Aken, PV international October, 2016

From MWT HJ cell to module.....

CtM change for soldered and back contact single cell laminates

- Electrical layout not optimized: explains larger CtM change
- Relative improvement CtM change BC vs. Soldered

Ag base conductive adhesive

View towards applications

- Broaden applicability: Focus on systems and applications in BIPV
 - aesthetics, uniform appearance size flexibility, shade tolerance freedom of design

Eurotron, Heliox, Stafier

Summary & Outlook

 All different HE solar cell concepts can be translated to a specific module concept and fullfill all the demands: highest yield, lifetime, low costs,..
 there is not one module concept that fits all cell concepts

- Market adoption of new cell and module concepts is not straightforward
 - Incremental improvements preferred
 - Bankability: lack of long term field experience data
- How to accelerate market uptake?
 - Show competitiveness by significant performance improvements, cost reduction approaches and field data collection!!
 - Broaden applicability BIPV: Aesthetics, transparency, colours, flexibility of shape & size,
 etc, I2PV: Bifaciality

Acknowledgements

- MWT HJ cells/modules
 Gianluca Coletti (Coletti@ecn.nl)
 Bas van Aken
- Cold spray and powder coating Maurice Goris (goris@ecn.nl)
 Benjamin Kikkert
- Thin cell modules
 Paul Sommeling
 Lars Okel

And all other colleagues that contributed for many years on this development

EC-FP7

TKI Urban Energy

