

## Correlative electron microscopy applied on perovskite-type solar cells

**Daniel Abou-Ras** 

**Helmholtz-Zentrum Berlin** 

Workshop on Advanced Characterization Possibilities in the Corelab Facilities of HZB for Metal-Halide Perovskite Characterization Berlin, October 12, 2017

### Outline

Overview of CoreLab for Corelative Microscopy & Spectroscopy (CCMS) @ HZB

Scanning electron microscopy techniques

Transmission electron microscopy techniques



### Hybrid Integrated Systems for Conversion of Solar Energy



### Acknowledgements

Ph.D. and diploma / master / bachelor students



Hannah Funk

Aleksandra

Nikolaeva



Sebastián Norbert Caicedo Schäfer



Maximilian Krause



Melanie Nichterwitz

Jürgen Bundesmann (technician) Jaison Kavalakkatt Sebastian Schmidt

Dietrich

Further colleagues assisting in microscope work

Numerous collaborations in academics and industry

#### Specimen preparation



Ulrike Bloeck



Christiane Förster



Honorary preparator Peter Schubert-Bischoff



### **CCMS: Ion Beam Instruments**

#### Zeiss Orion NanoFab



He/Ne ion sources Nanostructuring

Responsible: Dr. Katja Höflich

#### Zeiss CrossBeam 340



Ga ion source Tomography Nanofabrication

### CCMS: Transmission electron microscopes

#### Zeiss LIBRA 200FE



TEM/STEM EELS EDX (Thermo) Tomography

Philips CM12



TEM/STEM EDX (EDAX)

Responsible: Dr. Markus Wollgarten

#### **CCMS: Scanning electron microscopes**



Cathodoluminescence (DELMIC) AFM setup (SemiLab) Beam blanker (for lock-in amplification)

#### Zeiss UltraPlus



EBSD/EDX (Oxford Instr.) EBIC (point electronic) Beam blanker Gas injection system

7

#### Fractured cross-section



Saliba et al., Energy Environ. Sci. (2016)

#### Polishing of halide-perovskite devices difficult due to sensitivity to solvents



#### EDX analysis of cross-section specimen



See also: Application Note Oxford Instruments













Kühnapfel, Abou-Ras, et al., phys. stat. solidi (RRL) (2015)

daniel.abou-ras@helmholtz-berlin.de

13



#### Ph.D. thesis Norbert Schäfer, HZB

Microstrain within grains about 10-4

Comparison with other techniques: XRD ( $\sin^2\psi$ , microdiffraction, grazing-incidence), Raman mapping

Schäfer, Abou-Ras, et al., Ultramicroscopy (2016)

# Electron-beam-induced current measurements on cross-sections



## M. Nichterwitz, D. Abou-Ras, et al., Thin Solid Films (2009)



#### **Different EBIC signals between neighboring grains EBSD** map **EBIC** image SE image ZnO CIGSe . M. Nichterwitz, D. Abou-Ras, 1 µm et al., TSF (2009) Influence by free charge carrier density net doping Influence by 1.4e-07 Collection $f_c(x)$ in lifetime SCR QNR of CIGSe 1.2e-07 $L = (D\tau)^{0.5}$ EBIC signal (A) 1e-07 8e-08 L=2 µm Mo 6e-08-4e-08-.5 2e-08 μm 0 ò 0.5 ż 2.5 -0.5 1.5 1 Distance (µm)

15

#### **Modeling EBIC profiles**



### EBIC at applied bias on CulnSe<sub>2</sub> solar cell



SEM Zeiss UltraPlus with beam blanker EBIC system: point electronic GmbH

Variation of SCR width with applied voltage



Calculation of acceptor density (net doping)  $\Rightarrow$  Good agreement with capacitance-voltage measurements



### EBSD, CL, EBIC from identical specimen position

#### EBSD map, red lines: twins



EBIC image at room temp. (8 kV)



#### CL image at 1280 nm, 5 K, 8 kV



CL measurements in collaboration with Univ. Jena, Germany

J. Kavalakkatt, D. Abou-Ras, et al., J. Appl. Phys. (2014)

### Statistics on EBIC / CL signals from identical GBs



### Correlation of scanning probe microscopy with EBSD

#### KPFM: Kelvin probe force microscopy: Probing work function distributions







4.61eV 5.19eV



D. Abou-Ras, et al., pss (RRL) (2016)







R. Baier, D. Abou-Ras, et al., Appl. Phys. Lett. (2011) 22

EBSD pattern quality



### **Correlation Raman – EBSD**





5 µm

T. Schmid, D. Abou-Ras, et al., Nature Sci. Rep. 5 (2015) 18410

23

#### Sensitivity of organic-containing halide perovskites

#### SEM images



Klein-Kedem, et al. Acc. Chem. Res. 49, 2 (2016)

Focus rather on inorganic halide perovskites with wide band gaps

### EBIC on CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> Perovskite Solar Cell



Variation of applied voltage  $V_a$  & illumination conditions





Diffusion length increases when illuminating solar cell

Calculated doping density about 10<sup>17</sup> cm<sup>-3</sup>, as confirmed by capacitance analysis

N. Kedem, D. Abou-Ras et al., J. Phys. Chem. Lett. (2015)

25

#### **Electron energy-loss spectroscopy in TEM**

#### Various losses of impinging e- when scattering with electrons in materials



L. Weinhardt, M. Bär, Young Scientist Tutorial, MRS 2007 Spring Meeting

### EEL spectrum – details and example



### **Energy-filtered TEM (EFTEM)**



Twin boundary (TB) and random grain boundary (GB) in Cu(In,Ga)Se<sub>2</sub> thin film



E. Simsek-Sanli, D. Abou-Ras, et al., J. Appl. Phys. (2016)

29

### EELS: Plasmon mapping of organic blends



ZnPc/C60 blends used in bulk heterojunction solar cells

Phase separation of ZnPc and C60 detected by plasmon mapping

#### Valence EELS – Mapping of band-gap energies

Energy loss by scattering at valence electrons (1-10 eV)  $\Rightarrow$  Transition VB -> CB

 $\Rightarrow$  Energy position of signal en



Gu et al., Phys. Rev. B (2007)



#### Combination of vibrational spectroscopies



Sendner *et al.* Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz., 2016, 3, 613

#### (Microscopic) STEM-EELS Collaboration with C.T. Koch, HU Berlin





Rez, P. *et al.* Damage-free vibrational spectroscopy of biological materials in the electron microscope. *Nat. Commun.* 7:10945 doi: 10.1038/ncomms10945 (2016)

Electron microscopy and its related techniques provide insight to

- (Micro)structure, composition, electrical/optoelectronic properties
- Scales from subnanometer to centimeters

Correlative microscopy: combined electron/scanning probe/light microscopy on identical positions  $\Rightarrow$  Enhanced information on materials & devices

# Thank you very much!