

Dr.-Ing. Marcus Bär E-Mail: <u>marcus.baer@helmholtz-berlin.de</u> Phone: (030) - 8062 43824/-15641

EMIL - Experimental Capabilities of the Energy Materials In-Situ Laboratory

0

0

Acknowledgements

- •Dr. Regan G. Wilks
- •Dr. Roberto Félix-Duarte
- •Dr. Raul Garcia Diez
- •Dr. Evelyn Handick
- •Dr. Xeniya Kozina
- •Dr. Thomas Kunze
- •(Dr. David Starr)
- Ting Xiao
- Penghui Yang
- •Claudia Hartmann
- Jakob Bombsch
- Andreas Siebert
- Dongyang Liu

Impuls- und Vernetzungsfonds for support of the Helmholtz-University Young Investigator Group

Open questions in energy materials research

Chemical/electronic structure? Band alignment?

Compound formation?

Stability?

Charge carrier

separation/transport?

Secondary phases?

advanced analytics (permanent access & "two color" beamline)& deposition tools (industry-scale & connected via UHV transfer)

Uniquely suited for tomorrow's energy materials research!

X-Ray Spectroscopy @EMIL

PES – Photoelectron spectroscopy
PEEM – Photoemission electron microscopy
HAXPES – Hard X-ray PES

XES – X-ray emission spectroscopy
XAS –X-ray absorption spec.
XRF – X-ray fluorescence spec.
XRD – X-ray diffraction spec.

Wide X-ray energy range needed (80 eV - 10keV)

Photoelectron Spectroscopy (PES): Principle

X-ray PES (XPS, ESCA) + AES:

- $hv \sim 100 1500 \text{ eV}$
- Core levels
- Composition of surface
- Chemical species

Experimental Setup

PES: Surface Sensitivity

Values can be obtained from:

S. Tanuma et al., Surf. Interf. Anal., Vol. 21, 165 (1993) http://www.quases.com/frames/samples_and_downloads.htm

Courtesy of L. Weinhardt

XPS vs. HAXPES: PROBING DEPTH

(HA)XP(E)S: Qualitative Information

XPS gives information about elements at surface and chemical compounds (chemical shift)

(HA)XP(E)S (+AES): Chemical shifts

- Energy positions of core levels and Auger lines shift for different chemical compounds
- But: determination of chemical compound typically needs more than just one line position!
- To eliminate effects of band bending and charging the use of the Modified Auger Parameter can be used:

$$\alpha^* = \alpha + h\nu = E_{kin}^{Auger} + E_B^{PES}$$

Cd	3d5/2	CdO	404	Click
Cd	3d5/2	CdO	404.2	Click
Cd	3d5/2	CdCr0.3In1.7S4	405.4	<u>Click</u>
Cd	3d5/2	CdCr0.3In1.7S4	405.4	<u>Click</u>
Cd	3d5/2	CdS	405.4	<u>Click</u>
Cd	3d5/2	CdS	405.2	<u>Click</u>
Cd	3d5/2	CdS	405.3	<u>Click</u>
Cd	3d5/2	CdS	405.5	<u>Click</u>
Cd	3d5/2	CdS	405.1	<u>Click</u>
Cd	3d5/2	CdS	405.3	<u>Click</u>
Cd	3d5/2	CdS	405.4	<u>Click</u>
Cd	3d5/2	CdSe	405.3	Click
Cd	3d5/2	CdSe	405	<u>Click</u>
Cd	3d5/2	Ba/Ca/Cd/Sr/in_montmorillonite	406.4	Click

http://srdata.nist.gov/xps/

HAXPES: Current state-of-the-art

 Hard x-ray EMIL beamline (w/ cryogenic undulator) is expected to provide higher flux than current HIKE beamline

XPS: Quantification

Element
Line (e.g. 2p)

$$I \propto \sigma(Z, N, h\nu) \cdot T(E_{kin}) \cdot L(\gamma, N) \cdot \int_{0}^{d} c(Z, x) \cdot e^{-x \cos \theta / \lambda(E_{kin})} dx$$

 $\sigma(Z, N, h\nu)$: Photoionization cross section e.g. from Yeh and Lindau, Atomic Data and Nuclear Data Tables **32** (1985)

 $T(E_{kin})$: Electron Analyzer Transmission

 $L(\gamma, N) = 1 + \frac{1}{2}\beta(N)\left(\frac{3}{2}\sin^2\gamma - 1\right): \text{ angular asymmetry factor (=1 for "Magic Angle" of 54.7°)}$

 $\lambda(E_{kin})$: inelastic mean free path (of the electrons)

c(Z,x): concentration of element Z

Homogeneous layer, $d \rightarrow \infty, \, \theta \!=\! 0$:

$$\frac{c(A)}{c(B)} = \frac{I(A)}{I(B)} \cdot \frac{\sigma_B \cdot T_B \cdot \lambda_B}{\sigma_A \cdot T_A \cdot \lambda_A}$$

XPS: Quantification

Element
Line (e.g. 2p)

$$I \propto \sigma(Z, N, h\nu) \cdot T(E_{kin}) \cdot L(\gamma, N) \cdot \int_{0}^{d} c(Z, x) \cdot e^{-x \cos \theta / \lambda(E_{kin})} dx$$

 $\sigma(Z,N,h\nu): \begin{array}{l} \mbox{Photoionization cross section}\\ \mbox{e.g. from Yeh and Lindau, Atomic Data and Nuclear Data Tables$ **32** $(1985)}\\ \mbox{J. H. Scofield, J. Electron Spectrosc. Relat. Phenom.$ **8** $, 129 (1976).}\end{array}$

 $T(E_{kin})$: Electron Analyzer Transmission -> similar for similar kinetic energies

 $L(\gamma, N) = 1 + \frac{1}{2}\beta(N) \left(\frac{3}{2}\sin^2\gamma - 1\right): \text{ angular asymmetry factor (=1 for "Magic Angle" of 54.7°)}$ $\lambda(E_{kin}): \text{ inelastic mean free path "IMFP" (of the electrons)} \rightarrow \text{ similar for similar kinetic energies}$ L(Z, x): concentration of element Z L(Z, x): concentration of element Z

XPS: Quantification

Element
Line (e.g. 2p)

$$I \propto \sigma(Z, N, h\nu) \cdot T(E_{kin}) \cdot L(\gamma, N) \cdot \int_{0}^{d} c(Z, x) \cdot e^{-x \cos \theta / \lambda(E_{kin})} dx$$

 $\sigma(Z,N,h\nu)$: Photoionization cross section -> same for one photoemission line.

 $T(E_{kin})$: Electron Analyzer Transmission -> same for one photoemission line

 $L(\gamma, N) = 1 + \frac{1}{2}\beta(N)\left(\frac{3}{2}\sin^2\gamma - 1\right)$: angular asymmetry factor -> same for one photoemission line

 $\lambda(E_{kin})$: inelastic mean free path "IMFP" (of the electrons) -> same for one photoemission line

c(Z, x): concentration of element Z

Homogeneous layer, $d \rightarrow \infty$, $\theta = 0$:

$$\frac{c(A)}{c(B)} = \frac{I(A)}{I(B)}$$

PES – Photoelectron spectroscopy
PEEM – Photoemission electron microscopy
HAXPES – Hard X-ray PES

XES – X-ray emission spectroscopy
XAS –X-ray absorption spec.
XRF – X-ray fluorescence spec.
XRD – X-ray diffraction spec.

Wide X-ray energy range needed (80 eV - 10keV)

X-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES): Principle

XAS:

 Conduction band from the "perspective of a chosen core hole" (wave function overlap is needed)

<u>XES:</u>

 Valence band and weakly bound core levels from the "perspective of a chosen core hole"

Photon in - photon out techniques => investigation of buried interface, charging samples, liquids,...

Fluorescence vs. Auger process

T. Attwood, Soft X-rays and extreme ultraviolet radiation: principles, Cambridge University Press (1999). M. O. Krause, Atomic radiative and radiationless yields for K-shells and L-shells, J. Phys. Chem. Ref. Data 8, 307 (1979).

Need for high-flux beamline at a 3rd generation synchrotron light source!

Courtesy of L. Weinhardt

XES: Probing depth

- "photon in photon out" technique
- More bulk sensitive than photoemission
- Attenuation lengths: some 10 ... few 100 nm

http://www.cxro.lbl.gov/optical_constants/atten2.html

XES & XAS: Experimental setup

H. A. Rowland, Philos. Mag. 13, 469 (1882).

Experimental setup in real life

XES example: S L_{2,3} emission spectrum

"Fingerprint" approach => identification of different species

Courtesy of L. Weinhardt

"Resonant" excitation

Combination of XES & XAS spectra

- XES probes occupied states
 - => Onset indicative for VBM
- XAS probes unoccupied states

=> Onset indicative for CBM

Combination of XES & XAS spectra

- XES probes occupied states
 - => Onset indicative for VBM
- XAS probes unoccupied states
 - => Onset indicative for CBM
- XES & XAS probe "E_g" (experimental uncertainty: ± 0.2 eV)
- Potential existence of core excitonic features in the XAS spectra

" E_g " is lower-bound approximation for the ground state band gap

Combination of XES & XAS spectra

- XES probes occupied states
 - => Onset indicative for VBM
- XAS probes unoccupied states
 - => Onset indicative for CBM
- XES & XAS probe "E_g" (experimental uncertainty: ± 0.2 eV)
- Potential existence of core excitonic features in the XAS spectra

" E_g " is lower-bound approximation for the ground state band gap

CdS: Impact of core excitonic feature

Weinhardt et al., PRB 75, 165207 (2007).

```
E<sub>g</sub> (CdS): 2.4 ... 2.5 eV
```

Landolt-Börnstein, Springer (2011)

 Taking core exciton into account (Gauss profile):

=> E_g = 2.7 eV

"E_g" is lower-bound approximation for the ground state band gap

Comparison with (validation of) calculated DOS

Weinhardt et al., PRB 75, 165207 (2007).

- XES represents (partial) density of states, DOS
- Comparison with calculated DOS useful to
 - => identify spectral contributions
 - => validate band structure calculations

"Resonant" excitation -> RIXS

XES => **RIXS**

(Resonant Inelastic X-ray Scattering)

- Coherent emission, conservation of crystal momentum
- Selection of k vectors only through excitation energy

S L_{2,3} RIXS of CdS

Weinhardt et al., PRB 75, 165207 (2007).

S L_{2,3} RIXS of CdS: Standard approach

- RIXS spectra measured at a series of energies around the absorption edge
- S L_{2,3} RIXS is tough: ~99.99% Auger
 ⇒ approx. 20 hours of measuring time for the complete series

Weinhardt et al., PRB 75, 165207 (2007).

S L_{2,3} RIXS of CdS: New VLS spectrometer

- RIXS spectra measured at every point in the absorption spectrum
- Total measurement time: 33 min

L. Weinhardt et al., PRB 79, 165305 (2009).

S L_{2,3} RIXS of CdS: RIXS map approach

S L_{2,3} RIXS of CdS: Validate theory with experiment

Research Example: Depth-resolved X-ray spectroscopy of mixed-halide perovskites

D.E. Starr,¹ G. Sadoughi,² E. Handick,¹ M. Gorgoi,^{1,3} S. Stranks, R.G. Wilks,^{1,3} H. Snaith,² M. Bär^{1,3,4}

Motivation and sample preparation

We have used electron and X-ray based spectroscopies with different information depths to:

- measure core and valence levels of CH₃NH₃PbI_(3-x)Cl_x/TiO₂
- correlate the chemical and electronic properties of the *surface* and the *near-surface* region
- monitor the formation of the perovskite *in-situ*

Sample preparation¹:

$$CH_3NH_3I + PbCI_2 \rightarrow CH_3NH_3PbI_{(3-x)}CI_x$$

(Samples provided by Prof. Henry Snaith Group)

- 1) Solution of $CH_3NH_3I + PbCl_2$ in DMF spincoated on compact TiO₂
- Samples annealed in N₂(g) filled glove box at 90°C for 2h

¹Michael M. Lee *et al.* Science **338**,643 (2012)

Pb 4f spectra: location of metallic Pb

Valence Band Spectra: Metallic Pb

In-situ perovskite formation in UHV

Depletion of CI in surface region

D.E. Starr, G. Sadoughi, E. Handick, R.G. Wilks, J.-H. Alsmeier, L. Köhler, M. Gorgoi, H. Snaith and M. Bär, Energy Environ. Sci. 8 1609 (2015).

CI 2p XPS and CI K edge XAS: Where does the chlorine go?

Where does the chlorine go?

D. Starr et al., Energy Environ. Sci., 2015,8, 1609.

XES: Beamdamage?!!!!!!!!

• N K XES spectra indicate that $CH_3NH_3PbI_{3-x}CI_x$ is altered in x-ray beam

Summary

- X-ray spectroscopies are well suited to probe the chemical and electronic properties of perovskite-based cell structures
- If observed, metallic Pb increases in its concentration with increasing bulk sensitivity
- No (within the detection limit) Cl is present at the surface of mixed halide perovskites
- Cl concentration increases towards TiO₂ substrate
- Beware of beamdamage

The Energy Materials In-situ Laboratory (EMIL) at BESSY II:

SISSY @ EMIL

Energy Materials In-Situ Lab Berlin

The EMIL Building (2000 qm)

The EMIL beamline (80-10,000 eV)

SISSY@EMIL: Analytics, Transfer, Cluster

SISSY@EMIL: automated UHV transfer

Sample sizes, holders and adapters

T – sample temperature (max. / min.)

EMIL: Advantages for Energy Research

Unique research environment

=> deposition tools for thin-film materials directly connected to synchrotron analysis without vacuum break (*in situ & in system*)

- (Quasi) permanent access to the synchrotron
 => feedback loop can be established
 - => knowledge-driven development of processes, materials, and devices
- Enable the establishment of a world-class international user community and industry collaboration at EMIL
- External User Philosophy

=> Use existing and establish new collaborations with the leading researchers in the world

=> Offer unique characterization and synthesis capabilities at EMIL
 => User support understood rather in form of a collaboration than a service

→ Attractive to researchers from all energy materials communities and beyond...

Acknowledgements: EMIL

- K. Lips: Technical Project Head
- S. Raoux: Head of Steering Committee, Nanospectroscopy/PEEM
- G. Reichardt: Technical Director
- J. Bahrdt, M. Scheer & team: Undulators
- R. Follath, F. Schäfers, S. Hendel, M. Hävecker & team: Beamline optics
- R. Keilholz & team, hammeskrause, planungsgruppe M&M: Construction and lab
- M. Bär, D. Starr, R.G. Wilks, I. Lauermann, T. Lußky: SISSY analytics
- T. Schulze, F. Fenske, O. Gabriel, K. Ellmer, M. Reiche: Deposition tools
- •A. Knop-Gericke, M. Hävecker, R. Schlögl (MPG): CAT analytics

- R. v. de Krol, K. Ellmer, K. Harbauer: PLD
- Ch. Jung & team: Domino
- A. Tallarek, J. Proszak: Team assistance
- H. Schlender, I. Helms & team: Communication
- M. Gorgoi, W. Eberhardt: Discussion and collaboration on HAXPES
- B. Rech, R. Schlatmann & team: Renewable Energy Division at HZB
- Funding: BMBF, HGF, HZB, MPG

