

X-ray CoreLab Facilities at HZB

HyPerCell/HySPRINT Workshop, 12. 10. 2017

X-Ray CoreLab at HZB

- Methods and instruments
- Registration and booking

Susan Schorr Chair of the X-Ray CoreLab Steering Committee

Mission statement

The **mission** of the X-Ray CoreLab is to use and to anchor the methods of lab-scale X-ray diffraction on an institutional and cross-cutting level in the HZB's strategy.

The X-ray CoreLab is supervised by a **Steering Committee** Susan Schorr, chair (EM-ASD) Christoph Genzel (EM-AME) Roel van de Krol (EE-IF) Bella Lake (EM-AQM)

The fundamental pillars of the X-ray corelab

Investigation of polycrystalline samples

What is a polycrystalline material?

real space 15 5 -10 -15 -10 -15 -10 -5 0 -5 0 -5 0 -5 0 -5 0 -5 0 -5 0 -5 0 -5 0 -5 0 -5 0 -5 0 -5 0 -5 0 -5 -10 -5 0 -5 -10 -5 -5 -10 -5-1

reciprocal space

3D periodic arrangement of atoms/ions/molecules

х

single crystal

four single crystals

Powder Diffraction (Bragg – Brentano – Geometry)

grazing incidence X-ray diffraction - GIXRD

sample: polycrystalline thin film

- parallel beam
- fixed incidence angle ω
- detector scan

Information content of X-ray diffractograms

Features of diffraction methods: non-destructive phase selective □ information depth nm ... cm Line position and line shift: **Crystal structure** before sulphurization Intensity [a. u.] residual stress S₂ (220) /(204 202)/Cu (111) -Mo (110 Culn₂ (Mo Ko Line width and line shape IS₂ (200 (211) □ micro strain, defects Mo KB Line intensity: 25 30 35 40 15 20 45 50 **Crystallographic texture** Energy [keV] reaction kinetics High energies >20 keV for: **Fluorescence lines:** □ ... High information depth element distribution □ ... XRF close to K-edges of many elements

Instrumentation @ LMC

Bruker D8 Advance for analysis of thin films (I.) and powders (r.)

powder diffraction

- fast scans with LYNX Eye 1D detctor (~5-10 min)
- sample changer for high throughput
- *in situ* high temperature sample environment
- Bruker EVA and TOPAS for phase analysis
- ICDD-PDF-2 for phase analysis, upgrade to PDF-4 in progress
- web access to FIZ-ICSD

What can be done?

- qualitative phase analysis (search/match with database)
- quantitative phase analysis (Rietveld refinement with e.g. TOPAS)
- single peak fits: lattice parameter (rectangular crystal system) peak witdh (FWHM)
- structure refinement
 - LeBail refinement (lattice parameter) Rietveld refinement (all structural parameters)

Anton Paar HTK 1200N High-Temperature Furnace-Chamber

Anton Paar HTK 1200N High-Temperature Furnace-Chamber

Specifications:

- $RT \le T \le 1200^{\circ}C$, $dT/dt \approx 1K s^{-1}$
- oscillating sample holder for enhanced grain statistics
- motorized z-alignment stage to compensate for sample thicknesses and thermal expansion
- p_{min} = 10⁻⁴ mbar, air and inert gas atmosphere*
- sample carriers for powders and thin films
 (Ø_{max} = 20 mm)
- X-ray window: graphite/Kapton (10 mm width)

* vacuum (scroll pump, $\approx 10^{-4}$ bar) and lnert gas atmosphere (e.g. N₂ or user supplied gas mixtures) available

monitoring of crystallization of ZnGe₂O₄

- in situ XRD measurements performed on Bruker D8 epuipped with Anton Paar HTK1200N
- 2θ range = $10^{\circ} 80^{\circ}$
- temperature range = $600 800^{\circ}$ C; 20 K steps; dT/dt \approx 1 K s⁻¹; 20 min delay before measurements
- air atmosphere
- phases: ZnGe₂O₄, GeO₂ (α-quartz-type)

in situ temperature-dependent diffraction

monitoring of crystallization of ZnGe₂O₄

grazing incidence diffraction (GIXRD)

- low background energy dispersive SOL-X detector
- sample changer for high throughput
- Bruker EVA for phase analysis
- sample hight cannot be adjusted (necessary for pattern refinement)

What can be done?

- qualitative phase analysis (search/match with database)
- single peak fits: lattice parameter (rectangular crystal system) peak witdh (FWHM)

Instrumentation @ LMC

PANalytical MRD (I.) and MPD (r.) for analysis of thin film and powders, for texture and epitaxy analysis and micro-diffraction

Instrumentation @ LMC

PANalytical MPD (multi purpose diffractometer)

- precise GIXRD measurements of thin films:
 parallel X-ray beam (X-ray mirror and Xe single counter), sample hight can be adjusted (z-scan)
- sample table for x-y scans allows scanning
- reflectivity option for film thickness and roughness
- fast **powder diffraction** with 1-D PIXcel detector

What can be done?

- > qualitative phase analysis (search/match with database)
- > quantitative phase analysis (Rietveld refinement with e.g. HIGHSCORE)
- single peak fits: lattice parameter (rectangular crystal system) peak witdh (FWHM)
- structure refinement
 LeBail refinement (lattice parameter)
 Rietveld refinement (all structural parameters)

sputtered In_xS_y layer T_{sub}= 230°C, 340°C, no heating

What happened with the sputtered In_xS_y layer?

D. Abou-Ras, G. Kostorz, D. Hariskos, R. Menner, M. Powalla, S. Schorr, A.N. Tiwari, Thin Solid Films 517 (2009) 2792.

$In_xS_y / CIGSe (T_{sub} = 340^{\circ} C)$

diffusion of Cu and Ga from CIGSe into the buffer $(In_xS_y) \rightarrow$ formation of vacancy compounds

$In_xS_y / CIGSe (T_{sub} = 340^{\circ} C)$

Ga-gradient in Cu(In,Ga)Se₂ absorber layers

ZnO window layer CdS CIGSe absorber Mo back contact glass substrate

cross-sectional SEM image

Ch. A. Kaufmann, R. Caballero, T. Unold, R. Hesse S. Schorr, M. Nichterwitz, H.-W. Schock, Sol. Energy Mat. & Sol. Cells (2008)

Simulated powder pattern: Cu(In,Ga)Se₂

112 Bragg peak

depth profiles of CIGSe thin films

depth profiles of CIGSe thin films

macrostrain and microstrain in thin films

 \rightarrow shift in peak position reveals stress regime

 \rightarrow separation of size and strain broadening

Cu_2ZnSnS_4 thin film grown by co-evaporation

B. A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.-W. Schock, Progress in Photovolatics: Research and Application (2010)

microstructure analysis of thin films

- microstructure analysis of CISe thin film absorber layers
- broadening of integral peak breadths β used to deduce microstrain and domain size
- depth-resolved characterization possible by varying incidence angles

Williamson-Hall analysis of CISe using pseudo-Voigt profile function to obtain β (done with Highscore Plus, PANalytical)

microstructure analysis of CISe using Thompson-Cox-Hastings pseudo-Voigt profile function to obtain β (done with Fullprof Suite software package)

→ size and strain directly calculated from corresponding profile parameters

estimation of thickness, density and roughness of thin films

- X-ray reflectometry is based on varying reflectivities of X-rays when traversing interfaces between dissimilar media (differing optical constants)
- resulting interference fringes allow modeling of thickness, density and roughness of thin layers
- higher contrasts in optical constants (for multi-layer systems) cause stronger oscillations
- layer thickness is inferred by the period of the oscillations

XRR pattern and fitted curve:

Results from modeling:

Layer	Layer Description	Density (g/cm3)	Thickness (nm)	Roughness (nm)
2,0	DensityOnly, Fe3O4	5.18	12.845	2.173
1,0	DensityOnly, CoO	6.45	44.143	1.862
Substrate	DensityOnly, SrTiO3	5.1	600000	0.993

Instrumentation @ LMC

PANalytical MRD for texture analysis:

- X-ray lens for high intensive parallel beam
- Eulerian cradle for 3D sample orientation
- Xe single counter
- X'Pert Texture to create pole figures and orientation distribution functions (ODF)

Pole figures recorded on CuInSe₂ (CISe) chalcopyrite-type thin film absorber layer

Orientation distribution functions (ODF) shown as contour plot and 3D plot for CISe Bragg peaks 112 and 204

texture of thin films

hybrid perovskite MAFACsPb $(I_xBr_{1-x})_3$ on glass substrate (C. Rehermann)

- accidental sample rotation during GIXRD measurement
- "sawtooth" pattern due to highly textured thin film

texture of thin films

110 pole figure @ $2\Theta = 14.0756^{\circ}$

 \rightarrow nearly epitaxial thin film

Panalytical MRD for epitaxy analysis and micro-diffraction

Monocapillary 230 x 0,1

- length 230 mm
- thickness 0,1 mm
- divergence 0,3°

Instrumentation @ WCRC

The 5-axes diffractometer ETA for surface gradient analysis

- direct sample rotation around the scattering vector
- polycapillary optics and soller + secondary mononchromator for thin film analysis

Principle of residual stress analysis by diffraction methods

Instrumentation @ WCRC

The energy-dispersive 8-circle diffractometer LEDDI

Laboratory Energy Dispersive DIffraction

simultaneous data acquisition with two detectors

 $\theta_1 = \theta_2$; $\chi = 60^\circ$

ω

in- and out-of-plane residual stress depth profiles from a single χ -scan

Full support : Planning and conducting experiments & data evaluation

Stahl_sin2psi_Probe_4_1.psi / Linie 1 **EDDI-LEDDI** 0.2022 Ein MATHEMATICA®-Progammsystem zur energiedispersiven 0.202 Eigenspannungsanalyse 0.201 Notebookdatei EDDI-LEDDI.nb 0.2015 EDDIbasicLEDDI.m Packagedatei: Letzte Änderung: 24. August 2016 0.20125 Listen mit diffraktionselastischen Konstanten (DEK) . 0.201 **Texture analysis** EDDI * 111 0.20075 0.2 0.4 0.6 0.8 • 221 1 111 A Radioaktives Präparat **Residual stress** Detektor im Labor A 422 Nützliche Tools * 110/ 111 Vorbereitung von ED-Messungen an EDDI analysis * 313 Auswertung von ED-Beugungsspektrei 60 r (µm) 100 120 4 220 20 Linienlagenkorrekturer 1 11 A 10 Darstellung von Ergebnissen 320/4 Quantitative Phasenanalyse zweiphasiger Gefüge Texturmessungen Ermittlung von Eigenspannungen und Eigenspannunstiefenverteilungen 20 40 z, r (ym) 60 80 1000 0 Ted Ted Ties Innert 🔜 fx 😪 📑 📄 🖳 🔄 Run Secto -1000 a, = -8422.99 ± 47.16 012 a, = 5500.97 ± 47.07 △ 104 -2000 $\sigma(z)^{Rietveld}$ a, = 0.8268 ± 0.0148 110 clear all -3000 σ_{II} (MPa) Preparation of data evaluation -4000 3000 $\dot{\sigma}(\tau)^{Rietveld}$ measured profile calculated profile residual -5000 2500 -6000 -7000 2000 -8000 [cts/s] 1500 -9000 ŝ 10 15 0 5 1000 500

Fit results

50 NO 00

are an an

- 10

RIETVELD analysis

(stress, microstructure)

linfo = T.Materia

.Material.Name = P.MPDFileName:

T.Substrate = Sample.Substrate() if (P.ShowSubstratePeaks)

* Default value for maximum T.Material.EnergyMax = 100;

energy

SubstratePeaks = P.ShowSubstratePeaks;

LoadFromMpdFile(P.MPDFileName)

Script based

evaluation

program

37

60

20

30

40

Energy [keV]

(b)

б

Synchrotron-like conditions in the lab?

Ga-Kα: 9.2 keV

In-Kα: 24.2 keV

WCRC/EMIL: 160 kV source

LMC: 70 kV source

in situ EDXRD/XRF during thin film growth

Energy-dispersive X-ray diffraction and fluorescence (EDXRD/XRF)

H. Rodriguez-Alvarez, A. Weber, J. Lauche, C. A. Kaufmann, T. Rissom, D. Greiner, M. Klaus, T. Unold, C. Genzel, H.-W. Schock, R. Mainz. Advanced Energy Materials **3**, 1381-1387 (2013).

Planar defects in Cu(In,Ga)Se₂ create a diffraction signal

without Cu-rich stage

with Cu-rich stage

R. Mainz et al., Energy Environ. Sci. 9, 1818 (2016)

Monitoring PD annihilation by real-time XRD

without Cu-rich stage

with Cu-rich stage

R. Mainz et al., Energy Environ. Sci. 9, 1818 (2016)

Cu₂ZnSnS₄ film formation from wurtzite nanorods

From nanorods to large grains within a few seconds!

- \rightarrow correlation of phase formation and domain growth
 - \rightarrow phase-transition-driven grain growth

new in situ X-ray laboratory

New X-ray diffractometer for powder diffraction and GIXRD was ordered for WCRC!

course on X-ray diffraction (for PhD students) will be organized next year (June 2018) @LMC

Scientists from all HZB divisions as well as external users have access to the X-Ray CoreLab.

1st step \rightarrow each potential user has to register online the user has to declare to follow the lab rules

2nd step → booking an instrument of the CoreLab via the online calendar system user should give a short description of the planned experiment and the samples he/she wants to study

3rd step \rightarrow check by the scientific lab manager to make sure, that the user has chosen the suitable instrument for his/her problem

4th step → scientific lab manager confirms the booking and the user gets access to the X-Ray CoreLab

LMC \rightarrow after introduction by the lab manager the user can do the experiments WCRC \rightarrow user experiments supported by instrument experts

Welcome to the X-Ray CoreLab!

Thank you for your attention!