The future of information technology as seen with x-rays

Hermann Dürr

Stanford Institute for Materials & Energy Sciences

Shaping the future of information technology: Opportunities for basic science

C. Graves, et al. Nature Materials (2013)

S. de Jong, et al. Nature Materials (2013)

Shaping the future of information technology: Opportunities for basic science

Shaping the future of information technology: Opportunities for basic science

pumps momentum

Durr, BESSY 2013

pumps energy

Shaping the future of information technology: Opportunities for basic science

pumps energy

pumps momentum

The FeCoGd Collaboration

The Stanford – Nijmegen – Zurich – Hamburg – Munich... Team

SLAC/SIMES : C. Graves, A.H. Reid, T. Wang, B. Wu, D.P. Bernstein, S. de Jong, J. Stöhr, A. Scherz, H. A. Dürr

U. Nijmegen : I. Radu, K. Vahaplar, J.H. Mentink, A.V. Kimel, A. Kiryliuk, Th. Rasing

SLAC/LCLS : W. Schlotter, J. J. Turner, M. Messerschmidt, M. Bionta, R. Coffee

MPI/pnSensor: S.W. Epp, R. Hartmann, N. Kimmel, G. Hauser, A. Hartmann, P. Holl, H. Gorke, D. Rolles, H. Soltau, L. Strüder

DESY : L. Müller

ETH Zurich : A. Fognini, Y. Acremann

Nihon U. : A. Tsukamoto

Optical control of nanoscale spin order in Fe66Co10Gd24

Real Space

SLAC

C. Graves, et al. Nature Materials (2013)

Optical control of nanoscale spin order in Fe66Co10Gd24

Real Space

SLAC

Durr, BESSY 2013

C. Graves, et al. Nature Materials (2013)

Optical control of nanoscale spin order in Fe66Co10Gd24

C. Graves, et al. Nature Materials (2013)

Outlook: Growth of magnetic order in Fe₆₆Co₁₀Gd₂₄

... occurs on the ps timescale

SLAC

Durr, BESSY 2013

Shaping the future of information technology: Opportunities for basic science

SLAC

pumps momentum Can we turn an insulator into a metal?

drives magnetic switching via spin currents

Optically induced ultrafast structural & electronic phase transition in VO₂

0

-100

 Φ =7.5mJ/cm²

60

50

0

100

Baum, Yang, Zewail, Science 318, 788 (2007)

) 70 8 ħω (meV)

80

90

SLAC

Durr, BESSY 2013

THz control of the insulator-metal transition in VO₂

required electric field ~1GV/m (1V/nm)

laser-induced THz field ~0.04 GV/m

near-field enhanced THz field ~0.2 GV/m

Shaping the future of information technology: Opportunities for nanoscale imaging...

...with few ps short x-ray pulses at 1KHz - 1MHz rep. rates availability of pump lasers crucial

SLAC

drives ps magnetic Durr, BESSY 20⁻ switching via spin currents drives ps cooperative Mott transition

The Magnetization & Dynamics Group

