# Data Flow in Macromolecular Crystallography (MX) Experiments

**Manfred S. Weiss** 

NP-GMX

Helmholtz-Zentrum Berlin, Germany

# The HZB-MX beam lines

### Beamline BL14.1

- Tunable energy: 5 16 keV
- Photon flux: 5.0 x 10<sup>11</sup> Ph / s



- PILATUS 6M-detector
- CATS robotic sample changer
- High-performance multi-axis goniometer MD2 with MK3



### Beamline BL14.2

- Tunable energy: 5 16 keV
- Photon flux: 4.5 x 10<sup>11</sup> Ph / s



- PILATUS3S 2M-detector
- G-ROB sample changer
- Nanodiffractometer with fast air-bearing axis



### Beamline BL14.3

- Fixed photon energy: 13.8 keV
- Photon flux: 1.2 x 10<sup>11</sup> Ph / s



- Rayonix MX225 CCD-detector
- Manual sample mounting
- High-performance multi-axis goniometer MD2-S with MK3



### The standard MX experiment



### A data set





A diffraction image



### A typical data set then and now

|                            | PILATUS (2013 ff) | CCD (until 2013) |
|----------------------------|-------------------|------------------|
| Total rotation range [°]   | 180               | 180              |
| No. of images              | 1800              | 180              |
| Image size [MB]            | 6                 | 18               |
| Data set size [GB]         | 11                | 3                |
| Total exposure time [s]    | 360               | 900              |
| Readout time [s]           | 4                 | 450              |
| Total time [s]             | 364               | 1350             |
| Data sets per 24 hrs       | 144               | 48               |
| Data rate [MB/s]           | 30                | 2.4              |
| Total data per 24 hrs [TB] | 1.5               | 0.15             |

# Data processing

Data processing is the step in which the collected diffraction images are reduced to a list of individual X-ray reflections (h, k, l) and their intensities I(h,k,l) and estimated errors  $\sigma$ I(hkl).

| h | k | 1  | I(hkl) | σI(hkl) |
|---|---|----|--------|---------|
| 0 | 0 | 6  | 24324  | 1276    |
| 0 | 0 | 12 | 12440  | 144     |
| 0 | 0 | 18 | 5111   | 123     |
| 0 | 0 | 24 | 7350   | 235     |
| 0 | 1 | 0  | 650    | 89      |
| 0 | 1 | 1  | 222    | 75      |
| 0 | 1 | 2  | 899    | 130     |
| 0 | 1 | 3  | 1250   | 95      |
| 0 | 1 | 4  | 2479   | 148     |
| 0 | 1 | 5  | 175    | 75      |
| • |   |    |        |         |
| • |   |    |        |         |
| • |   |    |        |         |

### Users wish to have their data processed in real time

- dedicated multi-processor server per beamline
- large data storage areas
- fast (parallel) data processing program
- more or less automated interface
- heavy network traffic



### The standard MX project





### **Standardization in MX**

• users bring 100-200 samples per 24-hrs of beam time



# Metadata in MX

# Relevant for the experiment

Wavelength of incident radiation

Orientation of rotation axis

**Rotation direction** 

Rotation increment per image

Crystal-detector distance

Detector type and orientation

Direct beam coordinates

Location and name of data set

## Metadata in MX

| Relevant for the experiment      | Nice to have for the experiment |
|----------------------------------|---------------------------------|
| Wavelength of incident radiation | Date and time                   |
| Orientation of rotation axis     | Flux on sample                  |
| Rotation direction               | Beam size and profile           |
| Rotation increment per image     | Exposure time per image         |
| Crystal-detector distance        | Experimenter                    |
| Detector type and orientation    | Size and shape of sample        |
| Direct beam coordinates          |                                 |
| Location and name of data set    |                                 |

# Metadata in MX

| Relevant for the experiment      | Nice to have for the experiment | Relevant for the project |
|----------------------------------|---------------------------------|--------------------------|
| Wavelength of incident radiation | Date and time                   | Composition of sample    |
| Orientation of rotation axis     | Flux on sample                  |                          |
| Rotation direction               | Beam size and profile           |                          |
| Rotation increment per image     | Exposure time per image         |                          |
| Crystal-detector distance        | Experimenter                    |                          |
| Detector type and orientation    | Size and shape of sample        |                          |
| Direct beam coordinates          |                                 |                          |
| Location and name of data set    |                                 |                          |

# The problem with Sample Composition

- Macromolecule production
- Macromolecular purification
- Macromolecule crystallization
- Treatment of crystal before shipment to synchrotron
- Data collection
- Data processing
- Structure determination and refinement
- Analysis



# The problem with Sample Composition

- Macromolecule production
- Macromolecular purification
- Macromolecule crystallization
- Treatment of crystal before ship
- Data collection
- Data processing
- Structure determination and refinement
- Analysis

- Source organism
- DNA source
- Forward primer
- *Reverse primer*
- Extraction from host organism
- Chromatographic techniques
- Buffer compositions
- Concentration of sample
  - Purity asse o Method
  - Biophysica o Plate type
  - Method of o Temperature
    - Concentration of macromolecule
    - Buffer composition of sample solution
    - Composition of reservoir solution
    - Volume and ratio of drop
    - Volume of reservoir
- Method crystal fishing bation time
- Device used for fishing
- Soaking conditions
- Soaking time

Ο

 $\cap$ 

Ο

- Cryo-protection
- *Method of cryo-cooling*

#### Workshop "Research Data Management at the HZB", 11.06.2019, Berlin-Adlershof, Germany

equence of construct

### **A Further Complication of the Situation**

- Only one in about 100 experiments ends up in the public record
  - No two samples are the same
  - Samples are slightly OR systematically different
  - Slight differences are often not documented

### **A Further Complication of the Situation**

- Only one in about 100 experiments ends up in the public record
- Some data sets are assembled from more than one sample

### **A Further Complication of the Situation**

- Only one in about 100 experiments ends up in the public record
- Some data sets are assembled from more than one sample
- Extreme case: serial crystallography

### FAIR data in MX

Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography

John R. Helliwell,<sup>a</sup>‡ Wladek Minor,<sup>b</sup>§ Manfred S. Weiss,<sup>c</sup>¶ Elspeth F. Garman,<sup>d</sup>‡‡ Randy J. Read,<sup>e</sup>‡‡ Janet Newman,<sup>f</sup>§§ Mark J. van Raaij,<sup>g</sup>§§ Janos Hajdu<sup>h,i</sup>¶¶ and Edward N. Baker<sup>j</sup>‡‡‡

May 2019: Joint editorial in IUCr J. Acta Cryst. D, Acta Cryst. F & J. Appl. Cryst.

### **Data Flow in MX Experiments**

Thank you for your attention