

Influence of the rear interface on composition and photoluminescence of CZTSSe absorber

Antonio Cabas-Vidani¹, Leo Choubrac², José A. Márquez², Thomas Unold², Matthias Maiberg³, Roland Scheer³, Hu Li⁴, Klaus Leifer⁴, Robin Pauer¹, Evgeniia Gilshtein ¹, Ayodhya N. Tiwari¹ and Yaroslav E. Romanyuk¹

¹Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf

²Dept. Structure and Dynamics of Energy Materials Helmholtz-Zentrum für Materialien und Energie GmbH Hahn-Meitner-Platz 1, D-14109 Berlin, Germany

³Institute of Physics, Martin-Luther-University Halle-Wittenberg, Halle 06120, Germany

⁴The Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Box 534, 75121 Uppsala, Sweden

UPPSALA UNIVERSITET

Motivation

Problems of Mo back contact:

Chen et al., J. Am. Ceram. Soc., 99(5), 2016.

1.5 MoSe₂ CdS CZTSe Mo 1.0 ZnC 0.5 Wf 0.0 4.9 eV √ −0.5 -1.0-1.5A: (NO MoSe2 : Flat Band) -2.0C: (MoSe2 : Eg=1.1eV aff=4.14eV) -2.5L 500 1000 1500 2000 2500 thickness [nm]

Cozza et al., IEEE J. Photovolt., 1-6, 2016.

 $2CuZnSnS(e)_{4} \rightarrow$ $2Cu_{2}S(e) + 2ZnS(e) + 2SnS(e) + MoS(e)_{2}$

Scragg et al., J. Am. Chem. Soc., 134(47), 2012.

Possible solution: insertion of an intermediate layer (IL)

CZTS Intermediate layer Mo

Intermediate layer (IL)

Ref	IL	Thinned Mo(S,Se) ₂	Alkalis diffusic	on	Additional notes	Substrate	M
Park et al., Thin solid films, 2017	MoO ₃	*	Na 🖊	к 1	Improved crystallization		
Liu et al., Sol. RRL, 2018	MoO ₃	\checkmark	К		Reduced voids at the back		
Englund et al., Phys. Status Solidi A, 2018	TiN	\checkmark	Na		Improved crystallization		
Liu et al., NPG Asia Materials, 2017	Al ₂ O ₃	\checkmark	Na		Reduced phase segregation		
Liu et al., Appl. Phys. Lett., 2014	TiB ₂	\checkmark			Smaller grains		
S. López-Marino et al., J. Mater. Chem., 2013	ZnO	*	Bilayer formation + less secondary phases		ases		
Colina et al., IEEE J. Photovoltaics, 2016	a-SiC	*	Increase in grain size		9		

Can we decouple the influence of the IL from growth variables?

Intermediate

layer

CZTS

Design of the bottom surface

Design of the bottom surface

SEM (cross-section)

Comparable growth for each section

SEM (cross-section)

Comparable growth for each section

XRD

SLG/Mo

400

65.5

800

66.0

2θ

66.5

SLG/Mo/Al2O3

67.0

SLG/Al2O3 SLG

Same cristallinity among the four parts of the absorber

XRF mapping

- Al₂O₃ layer does not influence composition
- Zn-richer and Sn-poorer on SLG

What about the opto-electronic properties of the absorber?

PL quantum yield (PLQY)

Quantitative PL allows to directly extract non-rad recombination losses:

$$V_{oc,nrad} = -\frac{kT}{q}\ln(PLQY)$$

PL quantum yield (PLQY)

Lower PL intensity on Al₂O₃

 PL peak shift agrees with composition change from XRF

PL quantum yield (PLQY)

Cabas-Vidani et al., Adv. En. Mater., 8(34), 2018.

PL intensity on Mo is comparable to devices with >10% device efficiency

PL quantum yield (PLQY)

Al₂O₃ increases non-rad losses

Can the rear interface influence PL from the top-surface?

Simulated PL (SCAPS)

Worst case scenario: downward band-bending

CZTS

Ec

Ev

10

PL from the top-surface should not be affected!

– so there must be another reason!

XPS (front surface, \approx 6nm)

Higher Na intensity for CZTSSe on Mo

Conclusions

Different rear interfaces can influence CZTSSe metal ratios (despite identical processing!)

- Al₂O₃ intermediate layer has (surprisingly) negative impact on the front PL
- Lowest non-rad recombination is still for Mo back contact

[manuscript in preparation]

Thank you for your attention!

This research was supported by STARCELLS (H2020-NMBP-03-2016-720907)

BACK-UP SLIDES

TOF-SIMS

- Matrix elements are unaffected by back interface
- Na distribution is comparable

TOF-SIMS

XPS (20-30 nm total depth)

SEM Li-doped CZTSSe

EDX

• Al₂O₃ acts as Se diffusion barrier

XRF

💡 Empa Materials Science and Technology

- 2.200

- 2.100

- 2.000

1.700

XRF vs EDX

3.

6 -9 -

12 -

15 -

18 -

21 -24 -

- 0.9000

0.8400

- 0.7800

0.7200

- 0.6600

0.6000

EDX

	Cu/Zn	Cu/Sn	Zn/Sn
SLG	1.41	1.66	1.16
SLG/Mo	1.42	1.64	1.15
SLG/Mo/Al ₂ O ₃	1.42	1.64	1.15
SLG/Al ₂ O ₃	1.41	1.65	1.16

nrad losses (front vs back)

