Correlative EBIC-EBSD-APT Demonstrate Diverse Role of Grain Boundaries in Cu(In,Ga)Se₂ Solar Cells

Mohit Raghuwanshi, Roland Wuerz, **Oana Cojocaru-Mirédin**

I. Physikalisches Institut (IA), RWTH Aachen (Germany) ZSW, Stuttgart (Germany)

raghuwanshi@physik.rwth-aachen.de

Institut (IA)

Electron Beam Induced Current (EBIC)

Bright: More current collection Dark: Less current collection

- Using electrons to generate e-h+ pair
- One electron can generate 0 to 1000 e-h+ pair
- e-h+ pairs are collected by an external circuit thus measuring the current

EBIC on CIGS: Previous studies

- 1) Does not explain high efficiency of CIGS in polycrystalline form
- 2) Back side of CIGS not crucial for solar cell efficiency
- 3) Only 1-2 GBs in cross section shown

Abou-Ras, et.al Solar Energy Materials and Solar Cells, 95, no. 6 2011 Kavalakkatt et al *Journal of Applied Physics* 115, no. 1 14504, 2014

EBIC on CIGS: Previous studies

Only few GBs in cross section shown

Kawamura et al, Japanese Journal of Applied Physics 49 (2010) 062301

EBIC on CIGS: Previous studies

Probe Group Only few GBs in cross section shown

Motivation:

- 1) Investigate GBs in space charge and middle region
- 2) Does the GB composition influence the EBIC signal

EBIC measurements on CIGS

Detrimental

EBIC measurements on CIGS

Bright means better generation/collection of carriers

Influence of injection conditions

(a) 10 kV 25pA

RWTHAA

HEN

I. Physikalisches Institut (IA) Physik neuer

Materialien

Statistics: change in EBIC current at Grain Boundaries

Atom

Probe

Group

Raghuwanshi et al ACS Appl Mater Interfaces (2018) 10:14759–14766.

Statistics: change in EBIC current at Grain Boundaries

Raghuwanshi et al ACS Appl Mater Interfaces (2018) **10**:14759–14766.

10

Statistics: change in EBIC current at Grain Boundaries

Raghuwanshi et al ACS Appl Mater Interfaces (2018) **10**:14759–14766.

$$\Delta \eta = \frac{\eta_{GB} - \eta_{Grain}}{\eta_{Grain}}$$

Benign GB

Group

Similar grain boundary profile was obtained on high efficient (21.1% from ZSW) cells¹

What happens at a dark GB?

Benign GB

Detrimental GB

Benign GB

Detrimental GB

Neutral GB

Statistics

	Change in EBIC Δη	GB angle	Na (at. %)	O (at. %)	∆ Cu (at. %)	∆ Se (at. %)	∆ In (at. %)	∆ Ga (at. %)
Neutral	0	60°(Σ3)	0	0	0	0	0	0
	0	60°(Σ3)	0	0	0	0	0	0
	0	60°(Σ3)	0	0	0	0	0	0
Benign								
Detrimental								

tatistics		Change in EBIC	GB angle	Na	Ο	∆ Cu	Δ Se	ΔIn	∆ Ga	
		Δη		(at. %)						
	Neutral	0	60°(Σ3)	0	0	0	0	0	0	
		0	60°(Σ3)	0	0	0	0	0	0	
		0	60°(Σ3)	0	0	0	0	0	0	
	Benign	+104	81°	2	0	-8.0	+3.8	+2.9	0	
		+114	46.5°	1.7	0	-7.8	+3.0	+3.0	0	
		+51	21.8°	2.5	0	-9.3	+4	+3.5	0	
Atom	Detrimental									
Probe Group										

22

HFI

VEH

Statistics		Change in EBIC	GB angle	Na	Ο	∆ Cu	∆ Se	Δ In	∆ Ga	
		Δη		(at. %)						
	ສ	0	60°(Σ3)	0	0	0	0	0	0	
	leut	0	60°(Σ3)	0	0	0	0	0	0	
	2	0	60°(Σ3)	0	0	0	0	0	0	
	Benign	+104	81°	2	0	-8.0	+3.8	+2.9	0	
		+114	46.5°	1.7	0	-7.8	+3.0	+3.0	0	
		+51	21.8°	2.5	0	-9.3	+4	+3.5	0	
	Detrimental	-118	24°	0	0	+3.5	-2.0	-1.5	0	
		-151	88°	0.4	0.6	+4.5	-1.7	0	-3.5	
		-43	22.2°	0.1	0.3	+2.5	-1.3	+4.2	-5.4	
		-114	44.3°	0	0.1	-2.0	+1.5	+2.1	-1.3	
		-125	59°	0.3	0.4	-3.8	+3.4	+2.0	-1.5	
Atom Probe Group		-100	32°	0.3	0.4	-4.6	+3.0	+2.5	-2.5	UNIV

23

ACHEN ERSITY

Overall trend in composition

Atom

Probe

Group

Accepted in Advanced Functional Materials

O and Ga at GB

Atom

Probe

Group

Accepted in Advanced Functional Materials

- Clear correlation observed for change in EBIC with Ga and O at GB
- O was previously predicted to act like a passivating agent for GBs, ^[1] and have shown to be even beneficial for CIGS device in Cahen and Noufi model. ^[2]

U. Rau, et al. *Appl. Phys. A* 2009, *96*, 221.
R. Noufi, et al. *Solar Cells* 1986, *16*, 479.

25

Cu rich CIGS

Cu rich CIGS

$$\begin{split} & V_{\rm Cu} <\!\!<\!\!{\rm Cu}_{\rm In} <\!\!{\rm Cu}_i <\!\!{\rm In}_{\rm Cu} \quad ({\rm Cu \ rich}; \ {\rm In \ rich}; \ n \ type), \\ & V_{\rm Cu} <\!\!{\rm Cu}_{\rm In} <\!\!{\rm In}_{\rm Cu} <\!\!{\rm Cu}_i <\!\!{\rm V}_{\rm In} \quad ({\rm Cu \ rich}; \ {\rm In \ rich}; \ p \ type), \\ & V_{\rm Cu} <\!\!{\rm V}_{\rm In} <\!\!{\rm In}_{\rm Cu} <\!\!{\rm Cu}_{\rm In} <\!\!{\rm Cu}_{\rm In} <\!\!{\rm Cu}_i \quad ({\rm Cu \ poor}; \ {\rm In \ rich}; \ n \ type), \\ & V_{\rm Cu} <\!\!{\rm In}_{\rm Cu} <\!\!{\rm V}_{\rm In} <\!\!{\rm Cu}_{\rm In} <\!\!{\rm Cu}_{\rm In} <\!\!{\rm Cu}_i \quad ({\rm Cu \ poor}; \ {\rm In \ rich}; \ p \ type), \\ & V_{\rm Cu} <\!\!{\rm In}_{\rm Cu} <\!\!{\rm V}_{\rm In} <\!\!{\rm Cu}_{\rm In} <\!\!{\rm Cu}_{\rm In} <\!\!{\rm Cu}_i \quad ({\rm Cu \ poor}; \ {\rm In \ rich}; \ p \ type), \\ & Cu_{\rm In} <\!\!{\rm V}_{\rm Cu} <\!\!{\rm V}_{\rm Lu} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_{\rm In} <\!\!{\rm Cu}_i \quad ({\rm Cu \ rich}; \ {\rm In \ poor}; \ n \ type), \\ & Cu_{\rm In} <\!\!{\rm V}_{\rm Cu} <\!\!{\rm V}_{\rm Cu} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i \quad ({\rm Cu \ rich}; \ {\rm In \ poor}; \ n \ type), \\ & Cu_{\rm In} <\!\!{\rm V}_{\rm Cu} <\!\!{\rm V}_{\rm Lu} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i \quad ({\rm Cu \ rich}; \ {\rm In \ poor}; \ n \ type), \\ & Cu_{\rm In} <\!\!{\rm V}_{\rm Cu} <\!\!{\rm V}_{\rm Lu} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i \;\!{\rm Cu}_i; \\ & ({\rm Cu \ rich}; \ {\rm In \ poor}; \ p \ type), \\ & Cu_{\rm In} <\!\!{\rm Cu}_i <\!\!{\rm V}_{\rm Lu} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i \;\!{\rm Cu}_i; \\ & Cu \ rich; \ {\rm In \ poor}; \ p \ type), \\ & Cu_{\rm In} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i \;\!{\rm Cu}_i; \\ & Cu \ rich; \ {\rm In \ poor}; \ p \ type), \\ & Cu_{\rm In} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i \;\!{\rm Cu}_i; \\ & Cu \ rich; \ {\rm In \ poor}; \ p \ type), \\ & Cu_{\rm In} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i \;\!{\rm Cu}_i; \\ & Cu \ rich; \ {\rm In \ poor}; \ p \ type), \\ & Cu_{\rm In} <\!\!{\rm Cu}_i \;\!{\rm Cu}_i \;\!{\rm Cu}_i; \\ & Cu \ rich; \ {\rm In \ poor}; \ p \ type), \\ & Cu_{\rm In} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i; \\ & Cu \ rich; \ {\rm In \ poor}; \ p \ type), \\ & Cu_{\rm In} <\!\!{\rm Cu}_i <\!\!{\rm Cu}_i \;\!{\rm Cu}_i; \\ & Cu \ rich; \ {\rm Cu}_i;$$

Electron hole pairs are produced in grains but are actively recombined at GBs

Hence no signal from deeper grains

Cu rich CIGS

$$\begin{split} & V_{\mathrm{Cu}} < \mathrm{Cu}_{\mathrm{In}} < \mathrm{V}_{\mathrm{In}} < \mathrm{Cu}_{i} < \mathrm{In}_{\mathrm{Cu}} \quad (\mathrm{Cu \ rich; \ In \ rich; \ } n \ \mathrm{type}), \\ & V_{\mathrm{Cu}} < \mathrm{Cu}_{\mathrm{In}} < \mathrm{In}_{\mathrm{Cu}} < \mathrm{Cu}_{i} < \mathrm{V}_{\mathrm{In}} \quad (\mathrm{Cu \ rich; \ In \ rich; \ } p \ \mathrm{type}), \\ & V_{\mathrm{Cu}} < \mathrm{V}_{\mathrm{In}} < \mathrm{In}_{\mathrm{Cu}} < \mathrm{Cu}_{\mathrm{In}} < \mathrm{Cu}_{i} \quad (\mathrm{Cu \ poor; \ In \ rich; \ } n \ \mathrm{type}), \\ & V_{\mathrm{Cu}} < \mathrm{In}_{\mathrm{Cu}} < \mathrm{V}_{\mathrm{In}} < \mathrm{Cu}_{\mathrm{In}} < \mathrm{Cu}_{i} \quad (\mathrm{Cu \ poor; \ In \ rich; \ } p \ \mathrm{type}), \\ & \mathrm{Cu}_{\mathrm{In}} < \mathrm{V}_{\mathrm{Cu}} < \mathrm{V}_{\mathrm{In}} < \mathrm{Cu}_{\mathrm{In}} < \mathrm{Cu}_{i} \quad (\mathrm{Cu \ poor; \ In \ rich; \ } p \ \mathrm{type}), \\ & \mathrm{Cu}_{\mathrm{In}} < \mathrm{V}_{\mathrm{Cu}} < \mathrm{Cu}_{i} < \mathrm{In}_{\mathrm{Cu}} \quad (\mathrm{Cu \ rich; \ In \ poor; \ } n \ \mathrm{type}), \\ & \mathrm{Cu}_{\mathrm{In}} < \mathrm{V}_{\mathrm{Cu}} < \mathrm{Cu}_{i} < \mathrm{In}_{\mathrm{Cu}} \quad (\mathrm{Cu \ rich; \ In \ poor; \ } p \ \mathrm{type}), \end{split}$$

Electron hole pairs are produced in grains but are actively recombined at GBs

Hence no signal from deeper grains

What is the composition?

Cu rich CIGS GB composition

29

- Strong correlation between GB properties and its composition is found
- Trait of a benign GB: Cu poooor, In/Se rich, Na (1-3 at%), No O, Ga unchange
- Trait of a detrimental GB: Cu rich, Na (<1 at%), O, Ga depletion
- Trait of a neutral GB: Twin, no change in composition
- No correlation between (random) GB misorientation and its composition/trait

- Existence of Bright GBs: type inversion/band bending/hole barrier: better separation of electron hole pairs hence more current
- Most of the GBs are bright: explains why most publications report Cu depletion at GB, also consistent with theoretical expectations.
- Some GBs are dark: explains some publications reporting Cu enrichment
- Reality: All the types of GBs coexist with different compositions.
- Strongly depends on the deposition process/grain-composition.

- All elements (CIGS,Na,O) at GB reflects change in its electrical properties, it is unknown whether impurities or the matrix elements play the most important role
- Why some twin boundaries are bright?
 - HRTEM investigations

Thank you for your attention

Dr. Oana, Cojocaru-Mirédin Mr. Jens Keutgen

