Low- and Intermediate-β Cavity Design

Tutorial introduction to superconducting resonators for acceleration of ion beams with β <1.

A. Facco - INFN-LNL

What are low-β superconducting resonators?

low-β cavities: Just cavities that accelerate efficiently particles with β < 1...

Iow- β cavities are often further subdivided in Iow-, medium-, high- β

β=1 SC resonators: "elliptical" shapes

 β <1 resonators, from very low (β ~0.03) to intermediate (β ~0.5): many different shapes and sizes

Low- and Intermediate-β cavity design

Typical superconducting low-β linacs

- many short cavities
- independently powered
- large aperture

- different beam velocity profiles
 - different particle q/A

r.u. b

cavity fault tolerance

Some history

The first low- β SC cavities application

HI boosters for electrostatic accelerators: first and ideal application of SC technology, hardly achievable NC cavities

New problems: very narrow rf bandwidth, mechanical instabilities

Early resonators: 70's

Low- β cavities for ion boosters developed in the 70's

•β~0.1

- •Materials:
 - Bulk Nb
 - •Pb plated Cu
- •E_a typically **2 MV/m**
- •Mechanical stability problems solved
- by the first electronic fast tuners for
- Helix resonators

SC low- β resonators : 80's

Low- β cavities in the 80's

•First low-β SC Positive Ion Injector at ANL: β~0.001÷0.2

•All ion masses

•New materials:

•Explosive bonded Nb on Cu

•Mechanical stability problems solved by electronic fast tuners VCX at ANL

•E_a typically **3 MV/m**; first operation above **4 MV/m**

HI SC low- β resonators: 90's

Low- β cavities in the 90's

•β~0.001÷0.2

•New materials:

•Sputtered Nb on Cu

•Linac project with SC RFQ starts at LNL

•Mechanical stability problems solved also by mechanical damping

•E_a typically 3-4 MV/m; first operation at **6 MV/m**

•Development of β ~0.3÷0.6 Spoke cavities starts

HI SC low- β resonators: present

2-gap spoke cavity and cryomodule (IPNO)

QWR, HWR and Spoke cavities (ANL)

• β ~0.001 ÷ 0.8

material: mainly Bulk Nb, but also sputtered
high intensity SC low-β linacs under construction

•Development for RIB facilities, neutron spallation sources, Accelerator Driven Systems...

•Design E_a typically **6** ÷**8 MV/m**, up to 15 for multicell elliptical

Low- β cavities: new applications

Туре	$\beta_{\sf max}$	A/q	current
Post-accelerators for RIB facilities	~ 0.2 (0.5)	7÷ 66	< 1 nA
HI drivers for RIB facilities	~ 0.3÷0.9	~ 1 ÷ 10	~0.1÷10 mA
<i>p,d</i> linacs for radioisotope production	~ 0.3	1 ÷ 2	~1÷10 mA
High Power Proton Accelerators for neutron spallation sources	~ 0.9	1	~10÷100 mA pulsed
High Power Deuteron Accelerators for material irradiation	~ 0.3	2	>100 mA cw

Low-ß cavity definitions

Low- and Intermediate-*β* cavity design

SRF09 - Dresden, 17/9/2009

Important parameters in accelerating cavities

Avg. accelerating field	$E_a = V_g T(\beta_0)/L$	MV/m		
Stored energy	U/E_a^2	J/(MV/m)²		
Shunt impedance	$R_{sh} = E_a^2 L/P$	MΩ/m		
Quality Factor	<i>Q=ωU/P</i>		CC	
Geometrical factor	$\Gamma = Q R_s$	Ω	Suc	
Peak electric field	E_p/E_a		tan	\bigcirc
Peak magnetic field	B_p/E_a	mT/(MV/m)	ts	E.
Dptimum β	β_{0}			260
Cavity length	L	m		beam

where:

 R_s =surface resistance of the cavity walls

P =rf power losses in the cavity, proportional to R_s

В

Energy gain, TTF, gradient

Energy gain:
$$\Delta W_p = q \int_{-L/2}^{L/2} E_z(z_p, t) dz_p$$

In a resonator $E_z(r,z,t) = E_z(r,z)\cos(\omega t + \varphi)$. (For simplicity, we assume to be on axis so that r=0, and $E_z(0,z) \equiv E_z(z)$).

A particle with velocity βc , which crosses z=0 when t=0, sees a field $E_z(z)\cos(\omega z/\beta c+\varphi)$.

Transit time factor:

$$T(\beta) = \frac{\int_{-L/2}^{L/2} E_z(z) \cos\left(\frac{\omega z}{\beta c}\right) dz}{\int_{-L/2}^{L/2} E_z(z) dz}$$

Avg. accelerating field:

$$E_a = \frac{1}{L} \int_{-L/2}^{L/2} E_z(z) dz$$

We obtain a simple espression for the energy gain

$$\Delta W_p = q E_a LT(\beta) \cos \varphi$$

Transit time factor (normalized)

It is usually convenient to use the **normalized transit time factor** and include the gap effect in the accelerating gradient:

Normalized Transit time factor:
$$T^*(\beta) = \frac{T(\beta)}{T(\beta_0)}$$

Avg. accelerating field:
$$E_a^* = T(\beta_0)E_a$$

where
$$\beta_0 \equiv \beta / T(\beta_0) = \max\{T(\beta)\}$$
 and $T^*(\beta_0) = 1$

and the energy gain definition does'nt change

$$\Delta W_p = q E_a^* L T^*(\beta) \cos \varphi$$

$T(\beta)$ for 1 gap (constant E_z approximation)

Low- and Intermediate-β cavity design

SRF09 - Dresden, 17/9/2009

$T(\beta)$ for 2 gap (π mode)

1° term: 1-gap effect $\rightarrow g < \beta \lambda/2$ 2° term: 2 gap effect $\rightarrow d \sim \beta \lambda/2$ 1°+ 2° term TTF curve (For more than 2 equal gaps in π mode, the formulas change only in the 2° term)

Transit time factor curves (normalized)

Normalized transit time factor curves vs. normalized velocity, for cavities with different number of gap

• the larger the gap n., the narrower the velocity acceptance

Remark: different definitions of gradient

- Sometimes difficult to decide on the definition of L: I_{int} , L_{max} or even $n\beta\lambda/2$
- The shorter L is defined, the larger E_a appears in Q vs. E_a graphs
- The energy gain, however, is always the same and all definitions are consistent

Low-β resonators basic requirements

To be efficient at low-β:

however, this implies:

• short gap length

 \rightarrow High peak fields, low energy gain

• low rf frequency

 \rightarrow Large resonators, complicated shapes

• small bore radius

 \rightarrow Low transverse acceptance

Superconductivity, with high fields and low power

dissipation, allows to overcome most of these drawbacks

Low-ß cavity types

Low- and Intermediate-*β* cavity design

SRF09 - Dresden, 17/9/2009

Low- β SC cavities peculiarities

- Low frequency
 - Large size
 - complicated geometries
 - High peak fields E_p, B_p
 - efficient operation at 4.2 K
- Short cavities
 - Few accelerating gaps-Large velocity acceptance
 - Many independent cavities in a linac (ISCL)
- Many different shapes
 - several different EM modes

Quarter-wave stuctures: small g/λ , small size

Low- and Intermediate-*β* cavity design

Half-wave structures – more symmetry

$$U\sim 2\pi V_0{}^2/(8\omega~Z_0)$$

$$P_{HWR} \sim 2 P_{QWR}$$

- A half-wave resonator is equivalent to 2 QWRs facing each other and connected
- The same accelerating voltage is obtained with about 2 times larger power

TM mode cavities – axial symmetry

- TM₀₁₀ (Transverse Magnetic) mode
- *B* is always perpendicular to the EM wave propagation axis (and to the beam axis)

IH and CH multi-gap structures

Low-ß cavities design issues

Low- and Intermediate-ß cavity design

SRF09 - Dresden, 17/9/2009

It must fulfill the following principal (rather general) requirements:

- 1. large E_a (energy gain)
- 2. large R_{sh} (low power dissipation)
- 3. easy and reliable operation
- 4. easy installation and maintenance
- 5. low cost-to-performance ratio

Preliminary choices

- beam energy \rightarrow
- velocity acceptance \rightarrow
- beam size, transv. \rightarrow
- beam long. size & $f \rightarrow$
- beam power \rightarrow
- gradient, efficiency \rightarrow
- cw, pulsed –
- cost, reliability

Choice of the SC technology

- Bulk Nb (by far the most used)
 - highest performance, many manufacturers, any shape and *f*
 - performance ****

- Sputtered Nb on Cu (only on QWRs)
 - high performance, lower cost than bulk
 Nb in large production, simple shapes
 - performance ***

cost ***

- Plated Pb on Cu (being abandoned)
 - lower performance, lowest cost, affordable also in a small laboratory
 - performance **

cost ****

Niobium bulk

The design must allow:

parts obtained by machining of Nb sheets, rods, plates,...

•required excellent electron beam welding

required excellent surface
treatment (large openings for
chemical polishing or
electropolishing, high pressure
water rinsing...)

A large variety of cavity shapes can be obtained

Niobium sputtering on copper

The design must allow:

- •OFHC Cu substrate
- •no brazing
- rounded shape optimized for sputtering
- •no holes in the high current regions
- •Only shapes with large openings for cathod insertion and large volumes to maintain sufficient distance between cathode and cavity walls

practically suitable only for QWRs

DC biased diode

Numbers to keep in mind in low-β cavities design

- Maximum peak electric field E_p
 - Achievable: > 60 MV/m
 - Reliable specs 30÷35 MV/m
- Maximum peak magnetic field B_p
 - Achievable >120 mT
 - reliable specs 60÷70 mT
- R_{res} residual resistance= R_s- R_{BCS}
 - achievable: ~1 n Ω
 - reliable specs <10 n Ω
- Maximum rf power density on the cavity walls
 - ~1*W/cm*² at 4.2K
- Critical Temperature
 - $T_c = 9.2\sqrt{1 B/200}$

EM design

minimize:

- E_p/E_a B_p/E_a

maximize:

• $E_a^2/(P/L)$

optimize: •*E*,*B* for beam dynamics geometry for MP •coupling and tuning

Low- and Intermediate-*β* cavity design

SRF09 - Dresden, 17/9/2009

EM design: Rf losses calculations

- Keep power
 density well below
 ~1 W/cm² at 4.2K
- Large safety
 margin required:
 local defects can
 increase power
 losses significantly

Low- and Intermediate-ß cavity design

Temperature distributions

- Keep T well below the critical value
- Thick walls are not always an issue with high RRR Nb
- provide good ways for liquid He flow
- avoid gas trapping

IFMIF HWR working in horizontal position. Gas He pockets had been be eliminated.

Low- and Intermediate-*β* cavity design

EM design: Multipacting

- Multipacting: resonant field emission of electrons under the action of the EM field
- Conditions:
 - 1. stable trajectories ending on cavity walls (cavity geometry) +
 - secondary emission coefficient >1 (surface preparation)
 - 3. initial electron impinging the right surface at the right field and phase to start the process (presence of free electrons)
- Initial electrons can be originated and captured far from the resonant trajectory (cavity geometry)

Low- and Intermediate-ß cavity design
Multipacting in low-β cavities - examples

2-point MP in a HWR

• 1 wall MP: E+B

418

417

416

415

414

413 + 60

y[mm]

2 walls MP: mainly E;
 B can be used to displace electrons away from the MP area

65

z[mm]

Courtesy of ACCEL

resonator wal
 trajectory 4

trajectory 4

Marana panjantan)

70

10 20 30 40 number of impact

Avoiding multipacting

Example for a simple geometry:

- code TWTRAJ (one of the first ceated for this scope - courtesy of R.Parodi)
- ~60000 Runs
- 0.005 MV/m steps in Ea
- 5 mm steps in e- starting position

Results:

- MP negligible near the gap
- Levels at the equator: its profile is critical
- Ellipsoidal shape 1.5:1 free of MP
- cavities must be designed with no stable MP trajectories, or with impact energy out of the δ >1 region
- it is often impossible to eliminate levels completely; to make them tolerable, the volume in which the electrons are captured must be small
- powerful codes are nowadays available for MP particles tracking, also as part of packages for EM and mechanical design of cavities

Example: redesigned HWR for MP removal

Low- and Intermediate-*β* cavity design

EM design: Beam steering

- Non symmetric cavities can produce beam steering
- Transversal kick:

$$\Delta p_{y} = q \int \left(E_{y}(z,t) + \beta c B_{x}(z,t) \right) dt$$

- The magnetic field gives usually the dominant contribution
- This can give serious beam dynamics problems, especially with high current beams in QWRs with large aspect ratio (approximately for $\beta_0 > 0.1$).

Beam steering in QWRs

On-axis field components in QWRs

QWR steering : homogeneous gap approximation

if E and B are constant in the gap, and null outside (square functions):

 $\frac{\beta}{\beta c \cdot tg} \frac{K_{EY}}{\beta c \cdot tg \left(\frac{\pi d}{\alpha}\right)}$

where
$$K_{Ey} = E_y / E_z$$
 and $K_{Bx} = B_x / E_z$

- •steering is (of course) proportional to E_a
- •E_y steering goes as $1/\beta^2$, B_x steering goes as $1/\beta$
- near optimum β , E_y steering goes as $(\beta \beta_0)/\beta^2$
- ϕ =0 (max. acceleration): no steering
- Φ =±90 (bunching-debunching): maximum steering

z

QWR steering compensation: axis displacement

$$\Delta y' = \frac{\pi}{\lambda} \cdot \frac{qE_a LT(\beta)}{mc^2 \beta^3 \gamma^3} \sin \phi \cdot y$$

The QWR steering has many similarities with the rf defocusing effect in misaligned cavities
In many low-β resonators, a slight displacement in y of the beam aperture axis can remove most of the steering

Steering compensation by gap shaping

Magnetic steering can be compensated by properly shaping E_y

QWR steering : 161 MHz standard shape (top) 161 MHz corrected

Low- and Intermediate-β cavity design

Mechanical design:

- •Statical analysis (He pressure...)
- •Dynamical analysis (mechanical modes...)
- •Thermal analysis (cooling, T distributions,...)
- Construction procedure

Frequency tuning

wall displacement toward: $\begin{cases} high E \rightarrow f down \\ high B \rightarrow f up \end{cases}$

Mechanical tuners

Slow tuners For center frequency tuning and helium pressure compensation

Mechanical tuner with Nb slotted plate (TRIUMF)

Fast tuners

Piezoelectric tuner actuator. Suitable for fast tuning and also for high precision slow tuning.

SC bellows tuner (ANL)

Low- and Intermediate-*β* cavity design

RF joints in SC mechanical tuners

- Low rf power density surfaces (e.g. capacitive tuning plates) can be cooled by thermal conduction through an rf joint
- Don't exceed a few mT magnetic field on rf joints. <u>1 mT</u> is safe
- Check the temperature distribution on the plate in operation
- Check the effect of a possible superto normal-conducting transition in such regions: sometimes it is not critical, leading to some increase of rf power losses but not to a cavity quench

Detuning from mechanical instabilities

Source:	Solution:
Helium pressure variations	mechanical tuning in feedback, mechanical strengthening
Lorentz Force detuning	slow tuning and rf feedback
microphonics	fast tuners, mechanical design, noise shielding, etc.
resonant vibrations	mechanical damping, electronic damping

Slow detuning: He pressure fluctuations

 $df \propto dP$

- "Natural" solutions
 - Design your resonator strong
 - Build your cryosystem stable in pressure, with low dP/dt: <5 Hz/min achievable without big efforts
 - use the mechanical tuner in a feedback loop
- "Clever" solution:
 - design a "self-compensating" resonator

Mechanical reinforcement: double wall

The double wall structure allows to null the net force of the He pressure

It is possible to expose to He pressure large surfaces without making them collapse

a careful design can minimize df/dP

Low- and Intermediate-β cavity design

Self-compensating design

resonators can be designed in order to produce displacements with opposite effects to the frequency, to obtain a balance.

ANL 3-Spoke resonator end-plate with ribs calibrated for minimum df/dP

Low- and Intermediate-β cavity design

Lorentz Force detuning

$$\delta f \propto -\delta(E_a^2)$$

- Lorentz force (radiation pressure) gives a typical quadratic detuning with field, always down
- solutions: strong mechanical structure, tuning in feedback

Resonant vibrations: mechanical modes

- Most dangerous: a small vibration can cause large deformation \rightarrow large detuning that can exceed the resonator rf bandwidth
- Excited by:
 - pressure waves in the He
 - mechanical noise from environment (pumps, compressors,...)
 - mechanical disturbances from cryostat accessories (tuners, valves, stepper motors...)
 - Lorentz force detuning coupling to amplitude fluctuations
- The deformation is usually too fast to be recovered by mechanical tuners (however, the piezo technology is progressing)
- Solutions:
 - 1. Make the rf bandwidth wider
 - overcoupling
 - electronic fast tuner
 - piezoelectric tuner (only for low mechanical f)
 - 2. Make the detuning range narrower
 - careful design
 - mechanical damping
 - electronic damping by properly exciting Lorentz forces

Example: stem vibration in a QWR

Mechanical modes:

- ~50-60 Hz most critical
- <150 Hz dangerous
- criticity decreasing with frequency

Lowest mode frequency of a 106.08 MHz Nb QWR:

Simulation: 81 Hz

Analytical: 83 Hz

Measured: 78

QWR mechanical frequency vs length of the inner conductor (\emptyset =60 mm, analytical results). red: 2mm thick, Nb tube; blue: full Cu rod; magenta: 80 mm dia tube. Green: 2nd mode. (*E*=Young modulus; *I*= geometrical moment of inertia of the *i.c.* tube cross section; μ =mass per unit length of the *i.c.* tube)

Mechanical vibration dampers

4-gap, 48 MHz QWR with vibration damper

80 MHz QWRs with vibration damper

attenuation of the vibration amplitude by approx. a factor of 10

Vibration dampers are cheap and effective in QWRs

Low- and Intermediate-ß cavity design

Rf power coupling

- Inductive couplers at low P (<1 kW) and low f (<300 MHz)
- Capacitive couplers above ~1 kW and ~ 300 MHz
- High power couplers can be very large and require a well integrated design

Low- and Intermediate-*β* cavity design

Cavity integration in cryostats

IFMIF separate vacuum cryostats, in the two versions with vertical or horizontal cavity orientation

- Different solutions can be exploited for the same cavity types
- Couplers, tuners and rf lines are often dominant ingredients, especially in high rf power cryostats

Vacuum scheme in low-β cryostats

Design objectives in every accelerator cryostat: cryogenic efficiency, easy installation and maintenance, stable and reliable operation

Common vacuum cryostat (TRIUMF)

Typical problem in low-β cryostats: choice between common and separate vacuum.

- In many low-β cryostats the vacuum inside and outside the resonators is not separated
- cryostat design and assembly simplified
- possible contamination of rf surfaces from outside the resonator
- In spite of that, very high Q can be maintained for years in on-line resonators
- Q degradation only when the cryostat is vented from outside the resonators
- *Provide clean venting, and common vacuum will be (nearly) as reliable as separate one!*

State of the art

Low- and Intermediate-β cavity design

SRF09 - Dresden, 17/9/2009

Low-ß resonators performance

- achieved >60 MV/m and >120 mT peak fields, and <1 nΩ residual resistance at 4.2K
- Even if geometries are not favorable for surface preparation (numerous welds, small apertures, etc), the maximum *E*,*B* fields are not too far from the ones of β=1 cavities
- However, a larger safety margin must be kept
- The recent application to low-β of the most advanced preparation techniques had raised also low-field Q's to extremely high values
- Still problems with Qslopes and Q-switches

Quarter-wave stuctures: Quarter-Wave resonators

48≤f≤160 MHz, 0.001≤β₀≤0.2

- + Compact
- + Modular
- + High performance
- + Low cost
- + Easy access
- + Down to very low beta
- Dipole steering for higher β QWRs
- Mechanical stability for lower f QWRs

Very successful

ANL 4-gap QWR family

Low- and Intermediate-ß cavity design

Some of the QWR worldwide

Low- and Intermediate-β cavity design

SRF09 - Dresden, 17/9/2009

Quarter-wave stuctures: Split-ring resonators

 $90 \le f \le 150 \text{ MHz}, \ 0.05 \le \beta_0 \le 0.15$

- + relatively large energy gain
- + good efficiency
- mechanical stability
- beam steering
- high peak fields
- more expensive and difficult to build than QWRs

In use for many years being replaced by QWRs

Half-wave structures: Half-Wave resonators (coaxial)

160≤f≤352 MHz, 0.09 ≤ β_0 ≤ 0.3

- Most of the QWRs virtues
- + + No dipole steering
- + Lower E_p than QWRs

MSU 322 MHz β=0.28

- Not easy access
- Difficult to tune (but new techniques coming)
- Less efficient than QWRs

Ideal around 150÷300 MHz

The first 355 MHz SC HWR ANL - β =0.12

ACCEL 176 MHz SC HWR β =0.09

Low- and Intermediate-ß cavity design

Half-wave structures: Single-SPOKE resonators

345≤f≤805 MHz, 0.15 ≤ β_0 ≤ 0.62

- + All virtues of coaxial HWRs
- + Higher R_{sh} than (coaxial) HWRs
- Iarger aperture than HWRs

- Larger size than HWRs, too large below ~350 Miz
- More expensive than HWRs

the favorite 2-gap choice around 350 MHz

IPNO SPOKE, β=0.35 352 MHz

🤁 β=0.4

SPOKE

Half-wave structures: Ladder resonators

350 MHz, $0.1 \le \beta_0 \le 0.3$

- + large energy gain
- + they can be made for rather low β
- + + easy access (removable side walls)

- small aperture
- not easy to build
- strong field emission
- ancillaries not yet fully developed

promising for beam boosting just after an RFQ

TM mode cavities: multi-cell Elliptical resonators

352≤f≤805 MHz, 0.47≤ $β_0$ ≤ 1

+ + Large energy gain

- + Highly symmetric field
- + taking profit of the wide β =1 experience
- + Low E_p and B_p
- + Large aperture

- Not suitable for β <0.5
- Dangerous Mechanical modes
- Dangerous Higher Order Modes

Very successful

Low- and Intermediate-*β* cavity design

TM mode cavities: single-cell Reentrant cavities

352≤f≤402 MHz, β >0.1

- + Highly symmetric field
- + Very Compact
- + Low E_p and B_p
- + Widest velocity acceptance
- + Possibility of large aperture
- little E gain
- mechanical stability
- inductive couplers only
- ancillaries not yet fully developed

for special applications

CH structures: Superconducting RFQ

80 MHz, $0.001 \le \beta_0 \le 0.035$

- + Compact
- + CW operation
- + High efficiency
- + Down to very low beta
- + large acceptance
- Mechanical stability, powerful fast tuners required
- Not easy to build
- strong MP and FE
- Cost

LNL SRFQ2, A/q=8.5

Efficient alternative to standard RFQs for cw beams

CH structures: Multi-SPOKE resonators

345≤f≤805 MHz, 0.15 ≤ β_0 ≤ 0.62

- + High performance
- + High efficiency
- + Large energy gain
- + Lower frequency and β than elliptical
- Mechanically stable
- Not easy access
- Smaller aperture than elliptical
- More expensive than elliptical
- More difficult to build and tune than elliptical

very successful, esp. for $\beta \sim 0.3 \div 0.6$

A. Facco - INFN

Low- and Intermediate- β cavity design

SRF09 - Dresden, 17/9/2009

Triple-spoke

CH structures: CH multi-gap SC cavities

174≤f≤800 MHz, 0.1≤ $β_0$ ≤ 0.3

- + Very efficient
- + large energy gain
- + feasible also for very low β
- β acceptance
- Difficult to have large aperture
- not easy to build and tune
- ancillaries not yet fully developed
- cost (...but possibly good cost/MV in a linac)

The future for fixed velocity profile ?

Conclusions

- SC technology: becaming the 1st choice also at low-β
- high performance reached, specifications still moving up
- new applications: very high current beams
- large variety of resonators operating, or ready for operation
 - today: QWRs, HWRs and elliptical
 - tomorrow: SPOKE
 - future: CH?
- numerous ongoing projects

....still a lot to do in the field...!

Thank you

Thanks also to all people who have contributed in the field

Low- and Intermediate-β cavity design

SRF09 - Dresden, 17/9/2009