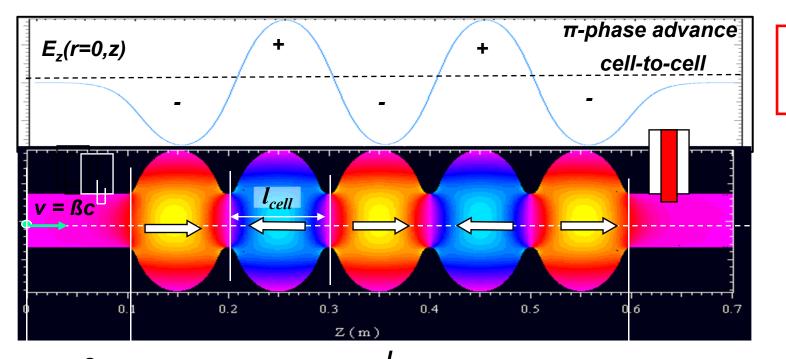


High-beta Cavity Design

K.Saito

High Energy Accelerator Research Organization (KEK), Accelerator Lab


- 1. SW Operation with SRF RF Cavity
- 2. Pill Box Cavity
- 3. Figure of merits of SRF Cavity Design
- 4. Criteria for Multi-Cell Structures
- 5. Example of SRF High-beta Cavities

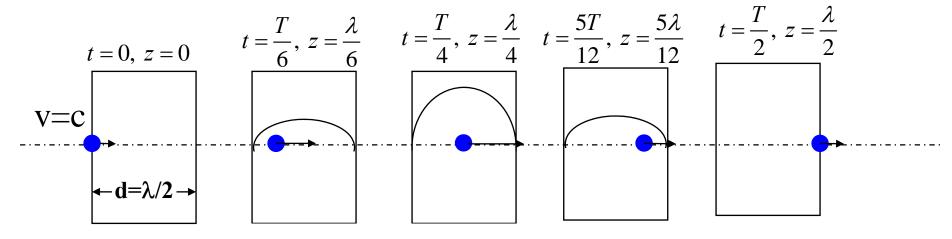
Acknowledgement:

In this lecture, I used many slides by Dr. J.Sektuwitz@ DESY, which he made nice lecture in China. I would like to thank for him very much.

1. Sanding Wave (SW) Operation and Standing Wave in SRF Cavity

SW Scheme in SRF Cavity Operation

 TM_{010} π -mode


Standing wave (CW) is used in SRF cavity acceleration!

Synchronic acceleration and max of $(R/Q)_{acc} \leftrightarrow I_{active} = NI_{cell} = Ncß/(2f)$ and the injection takes place at an optimum phase φ_{opt} which ensures that particles will arrive at the midplane of the first cell when E_{acc} reaches its maximum (+q passing to the right) or minimum (-q passing to the right).

$$L_{cell} = \frac{\beta \cdot \lambda}{2}, \qquad \lambda = \frac{c}{f} \qquad \begin{array}{l} \beta = \text{v/c} \\ \text{for electron } \beta = 1, \text{ proton } \beta < 1 \end{array}$$

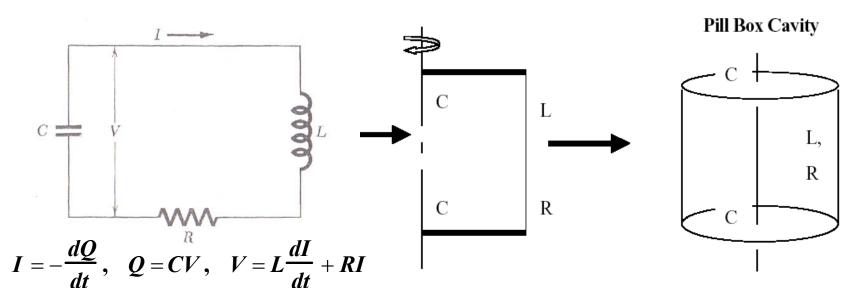
Transit Time Factor Due to SW Operation

$$V = \left| \int_{0}^{d} E_{z}(r=0,z)e^{i\omega t}dz \right| = \left| \int_{0}^{d} E_{z}(r=0,z)e^{i\omega\frac{z}{c}}dz \right| = E_{0} \left| \int_{0}^{d} e^{i\omega\frac{z}{c}}dz \right| = E_{0}d \cdot T$$

$$Z = C \cdot t$$

$$Z = C \cdot t$$

T: Transit time factor


$$T = \frac{2}{\pi} = 0.637$$
 (for Pill Box Cavity)

$$Eacc \equiv \frac{V}{d} = E_0 T$$

Acceleration efficiency is automatically reduced by $\sim 40\%$ in the SW scheme.

2. Pill Box Cavity

LC Equivalent Circuit of Cavity

$$\frac{d^2V}{dt} + \left(\frac{R}{L}\right)\frac{dV}{dt} + \left(\frac{1}{LC}\right) = 0, \quad V(t) = V_O \exp(-\alpha + i\omega)t$$

$$(-\alpha + i\omega)^2 + (-\alpha + i\omega)\left(\frac{R}{L}\right) + \left(\frac{1}{LC}\right) = 0,$$

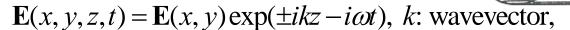
$$\alpha = \frac{R}{2L}, \quad \omega^2 = \frac{1}{LC} - \frac{R^2}{4L^2}$$

$$R \ll L, \quad \omega_{O}^{2} = \frac{1}{LC} \Rightarrow f = \frac{1}{2\pi\sqrt{LC}}$$

Q-value of the circuit

$$Q \equiv \omega \cdot \frac{\text{Stored Energy}}{\text{Powerloss/sec}} = \omega \cdot \frac{P(t)}{dP(t)/dt} = \omega \cdot \frac{L}{R}$$

$$=\frac{\omega}{2\alpha}$$


Q: proportional to 1/R

Electro-magnetic field in a waveguide

Maxwell equations in a waveguide

$$\nabla \times \mathbf{E} = i \frac{\omega}{c} \mathbf{B}, \ \nabla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{B} = -i \mu \varepsilon \frac{\omega}{c} \mathbf{E}, \ \nabla \cdot \mathbf{E} = 0, \ \rho = 0, \ \mathbf{j} = 0$$

$$\left(\nabla^2 + \mu\varepsilon \frac{\omega^2}{c^2}\right) \left\{\frac{\mathbf{E}}{\mathbf{B}}\right\} = 0,$$

$$\mathbf{B}(x, y, x, t) = \mathbf{B}(x, y) \exp(\pm ikz - i\omega t),$$

$$\nabla_t^2 + (\varepsilon \mu \frac{\omega^2}{c^2} - k^2) \left\{ \frac{\mathbf{E}}{\mathbf{B}} \right\} = 0, \quad \nabla_t^2 \equiv \nabla^2 - \frac{\partial^2}{\partial^2 z}, \quad \mathbf{E} = E_z \mathbf{e}_z + \mathbf{E}_t, \quad \mathbf{B} = B_z \mathbf{e}_z + \mathbf{B}_t$$

$$\mathbf{B}_{t} = \frac{1}{\left(\varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2}\right)} \left[\nabla_{t}\left(\frac{\partial B_{z}}{\partial z}\right) + i\varepsilon\mu\frac{\omega}{c}\mathbf{e}_{z} \times \nabla_{t}E_{z}\right],$$
 Homework I. Lead this formula.

$$\mathbf{E}_{t} = \frac{1}{\left(\varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2}\right)} \left[\nabla_{t}\left(\frac{\partial E_{z}}{\partial z}\right) - i\frac{\omega}{c}\mathbf{e}_{z} \times \nabla_{t}B_{z}\right]$$

 $TM \text{ mode: } B_z = 0, E_z \neq 0$

 $TE \text{ mode}: B_z \neq 0, E_z = 0$

TM- Modes

TM-
$$\mathsf{mode}:_{i\varepsilon\mu}\underline{\omega}$$

$$\boldsymbol{B_z} = 0, \, \boldsymbol{E_z} \neq 0$$

 $B_z = 0, E_z \neq 0 \implies Can accelerate beam$ Beam

$$\mathbf{B}_{t} = \frac{c\mu}{\left(\varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2}\right)} \left[\mathbf{e}_{z} \times \nabla_{t}E_{z}\right],$$

$$\mathbf{E}_{t} = \frac{1}{\left(\varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2}\right)} \nabla_{t} \left(\frac{\partial E_{z}}{\partial z}\right),$$

$$\left[\nabla_t^2 E_z + (\varepsilon \mu \frac{\omega^2}{c^2} - k^2)\right] E_z = 0,$$

Solve the eigenvalue problem, get k and Ez

Boundary condition $\mathbf{E}_{\mathbf{z}}|_{\mathbf{S}} = 0$ ($\mathbf{r} \cdot \mathbf{n} \times \mathbf{E} = 0$ on the surface of perfect conducto

$$\frac{|B_z|}{|B_z|}|_{S} = 0$$
 (: $\mathbf{n} \cdot \mathbf{B} = 0$ on the surface,

but automatically satisfied by the **FM**ode condition)

Similar for TE modes, which kicks beam.....

Eigen-value problem

$\psi(x,y) = E_z(x,y)$ for TM- mode or $B_z(x,y)$ for TE- mode

$$(\vec{\nabla}_t^2 + \gamma^2)\psi = 0$$
, $\psi|_S = 0$ (for TM-Modes) or $\frac{\partial}{\partial n}\psi|_S = 0$ (for TE-Modes)

$$\gamma^2 = \varepsilon \mu \cdot \frac{\omega^2}{c^2} - k^2 \ge 0$$

From the boundary condition,

$$\gamma^2 = \gamma_{\lambda}^2$$
, $\psi = \psi_{\lambda}$ ($\lambda = 1, 2, \cdots$) $k_{\lambda}^2 = \varepsilon \mu \frac{\omega^2}{c^2} - \gamma_{\lambda}^2$

If $\omega < c \frac{\gamma_{\lambda}}{\sqrt{\varepsilon \mu}}$, then k_{λ} is an imaginal number.

The wave is damped/trapped in the waveguide, if surface resistance large/small.

$$\omega_{\lambda} = c \frac{\gamma_{\lambda}}{\sqrt{\varepsilon \mu}} \cdots \text{cutoff frequency}$$

When $\omega \ge \omega_{\lambda}$, wave number k_{λ} is a real number, then the wave can propagate into the waveguide.

 $TM_{m,n,p}$ – mode $E_z = E_o \cos(kz) J_m(\frac{\rho_{m,n}}{r} r) \exp(-im\theta),$

$$E_{r} = \frac{iE_{0}p\pi}{\gamma_{m,n,p}}\cos(\frac{p\pi}{d}z)\frac{\partial J_{m}(\rho)}{\partial \rho}\exp(-im\theta), \qquad B_{r} = -\frac{E_{0}m\varepsilon\mu\omega_{m,n,p}}{\gamma_{m,n,p}}\cos(kz)J_{m}(\frac{\rho_{m,n}}{a}r)\exp(-im\theta)$$

$$E_{\theta} = \frac{E_{0}mp\pi}{\gamma_{m,n,p}^{2}dc}\cos(\frac{p\pi}{d}z)J_{m}(\frac{\rho_{m,n}}{a}r)\exp(-im\theta), \quad B_{\theta} = \frac{iE_{0}\varepsilon\mu\omega_{m,n,p}}{\gamma_{m,n,p}c}\cos(kz)\exp(-im\theta)\frac{\partial J_{m}(\rho)}{\partial \rho}$$
resonace frequency $\omega_{m,n,p} \Rightarrow f_{m,n,p} = \frac{c}{\sqrt{n}}\sqrt{\frac{\rho_{m,n}^{2}}{2} + \frac{p^{2}\pi^{2}}{2}}$

resonace frequency

$$\omega_{m,n,p} \Rightarrow f_{m,n,p} = \frac{c}{\sqrt{\varepsilon\mu}} \sqrt{\frac{\rho_{m,n}^2}{a^2} + \frac{p^2 \pi^2}{d^2}}$$

$$H_z = E_0 J_m \left(\frac{\rho'_{mn}}{a} r\right) \cos(m\theta) \sin(\frac{p\pi z}{d})$$

 $B_z = 0$

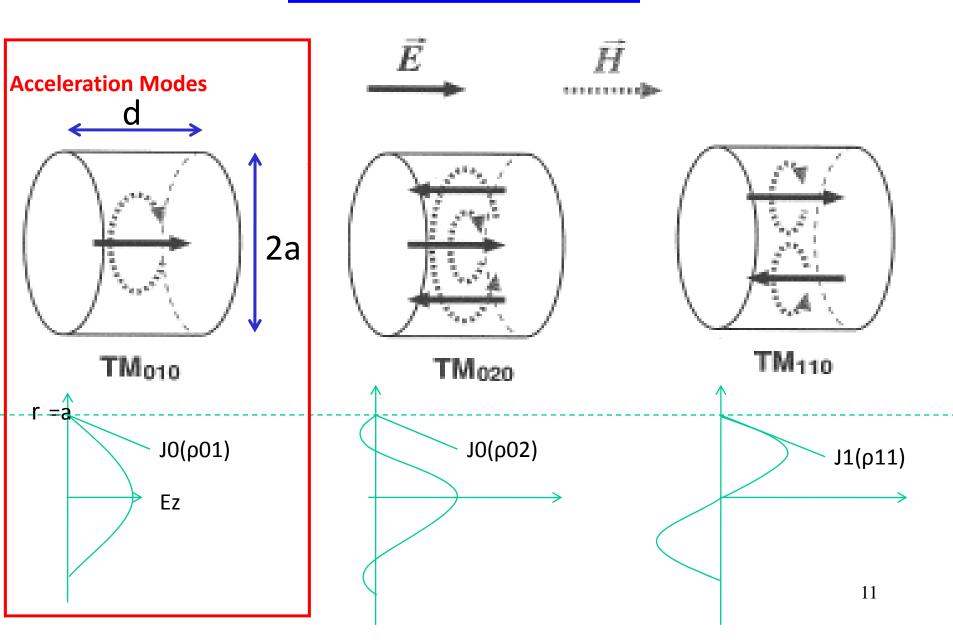
$$\sin(m\theta)\sin(\frac{p\pi z}{d})$$

$$E_{r} = \frac{i\omega\varepsilon}{k^{2}} \frac{m}{r} E_{0} J_{m} \left(\frac{\rho'_{mn}}{a}r\right) \sin(m\theta) \sin(\frac{p\pi z}{d}) \qquad H_{r} = \frac{1}{k^{2}} \frac{p\pi}{d} E_{0} J_{m} \left(\frac{\rho'_{mn}}{a}r\right) \cos(m\theta) \cos(\frac{p\pi z}{d})$$

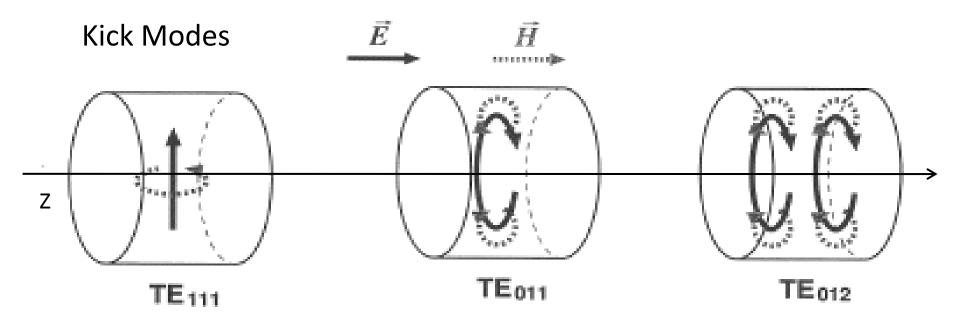
Resonance frequency

$$\frac{\ln(m\theta)\sin(\frac{p\pi z}{d})}{\cos(m\theta)\sin(\frac{p\pi z}{d})}$$

$$E_{\theta} = \frac{i\omega\varepsilon}{k^{2}} \frac{\rho'_{mn}}{a} E_{0} J_{m} \left(\frac{\rho'_{mn}}{a}r\right) \cos(m\theta) \sin(\frac{p\pi z}{d}) \qquad H_{\theta} = -\frac{1}{k^{2}} \frac{p\pi}{d} \frac{m}{r} E_{0} J_{m} \left(\frac{\rho'_{mn}}{a}r\right) \sin(m\theta) \cos(\frac{p\pi z}{d})$$


$$\cos(m\theta)\sin(\frac{p+2}{d}) \qquad H_{\theta} = -\frac{1}{k^{2}}\frac{p\pi}{d}\frac{m}{r}E_{0}J_{m}\left(\frac{p_{mn}}{a}r\right)\sin(m\theta)\cos(m\theta)$$

$$\omega^{2}\varepsilon_{0}\mu_{0} = \left(\frac{p'_{mn}}{a}\right)^{2} + \left(\frac{p\pi}{d}\right)^{2} \Rightarrow f = \frac{c}{2\pi}\sqrt{\left(\frac{p'_{mn}}{a}\right)^{2} + \left(\frac{p\pi}{d}\right)^{2}}$$
10


TE_{mnp} Modes
$$E_z = 0$$

$$E_z = \frac{i\omega\varepsilon}{m} \frac{m}{E} I \left(\frac{\rho'_{mn}}{E} v\right)$$

TM_{mnp} Modes

TE_{mnp} Modes

4. Figure of merits of Cavity Design

Figure of Merits of The RF Cavity Design

	Items	Notation
1)	Surface resistance	$R_{S}[\Omega]$
2)	RF dissipation	P _{loss} [W]
3)	Acceleration gradient	V[V]
3)	Unloaded Q	Q_{O}
4)	Geometrical factor	$\Gamma[\Omega]$
5)	Shunt Impedance	$Rsh[\Omega]$
6)	R over Q	$(R/Q)[\Omega]$
7)	Acceleration gradient	Eacc[V/m]
8)	Ratio of the surface peak electric field vs Eacc	Ep/Eacc [Oe/(MV/m)
9)	Ratio of the surface magnetic field vs Eacc	Hp/Eacc
10)	HOM loss factor	// / ⁻ 土
11)	Field flatness factor	$a_{\rm ff}$
12)	Cell to cell coupling	k _{CC}

Surface Resistance

Maxwell Equations.

$$\nabla \cdot \vec{\mathbf{B}} = 0, \ \nabla \times \vec{\mathbf{E}} + \mu \frac{\partial \vec{\mathbf{H}}}{\partial t} = 0$$

$$\nabla \cdot \vec{\mathbf{D}} = 0, \ \nabla \times \vec{\mathbf{H}} - \varepsilon \frac{\partial \vec{\mathbf{E}}}{\partial t} - \sigma \vec{\mathbf{E}} = 0$$

$$\vec{\mathbf{J}} = \sigma \vec{\mathbf{E}} \quad \text{(Ohm's Law)}$$

$$\begin{split} \vec{E}(\vec{x},t) &= \vec{E}_{\ell}(\vec{x},t) + \vec{E}_{t}(\vec{x},t), \\ \vec{H}(\vec{x},t) &= \vec{H}_{\ell}(\vec{x},t) + \vec{H}_{t}(\vec{x},t) \end{split}$$

For the transvers,

Plane wave : $\vec{E}_t(\vec{x},t) = \vec{E}_t(0) \cdot \exp(i\vec{k} \cdot \vec{x} - \omega t)$

$$\vec{H}_{t}(x,t) = \frac{1}{\mu\omega} [\vec{k} \times \vec{E}_{t}(\vec{x},t)],$$

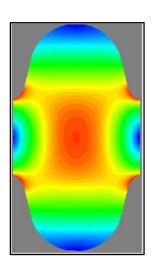
$$[k^{2} - (\varepsilon\mu\omega^{2} + i\mu\omega\sigma)] \begin{cases} \vec{E}_{t}(\vec{x},t) \\ \vec{H}_{t}(\vec{x},t) \end{cases} = 0$$

Rs: Surface resistance

Rs: Surface resistance
$$Z \equiv R_s + iX_s \equiv \frac{E_t}{H_t} \bigg|_{Surface} = \frac{\mu \omega}{k}$$

Surface Impedance

$$\frac{\mu\omega}{k}$$


Homework II

Lead the formula of Rs for good electric conductor

$$\mathbf{R_s} = \sqrt{\frac{\mu\omega}{2\sigma}} = \frac{1}{\sigma}\sqrt{\frac{\mu\sigma\omega}{2}} = \frac{1}{\sigma\delta} \qquad \mathbf{P_{loss}} = \frac{1}{2}\mathbf{R_s} \cdot \int_S \mathbf{H_s}^2 dS$$

$$\frac{1}{2} R_S \cdot \int_S H_S^2 dS$$

Charismatic RF Parameter of Cavity

U ≡ stored energy, Ploss:Surface RF Heating

Unloaded Qo

$$U = \frac{1}{2} \cdot \varepsilon \int_{V} E^{2} dV = \frac{1}{2} \cdot \mu \int_{V} H^{2} dV$$
$$P_{loss} = \frac{1}{2} \cdot R_{S} \int_{S} H_{S}^{2} dS$$

$$Q_O \equiv \frac{\omega U}{P_{loss}}$$

For acceleration mode (TM010), the higher Qo is better.

Acceleration Voltage
$$V[V] = \int_0^{L_{eff}} E dz$$
 on the beam axis.

Shunt Impedance

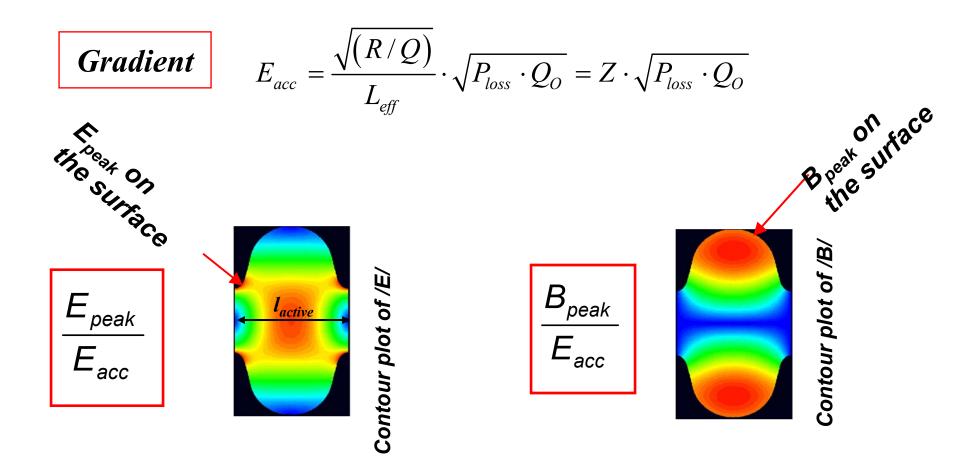
$$R_{sh}[\Omega] \equiv \frac{V^2}{P_{loss}}$$

This means the efficiency of the acceleration.

Charismatic RF Parameter of Cavity, continued.

(R/Q)
$$(R/Q) \equiv (R_{sh}/Q_0) = \frac{V^2}{\omega U}$$

This means how much energy is concentrated on beam axis. This does not depend on material but only cavity shape. This means the goodness of the cavity shape.

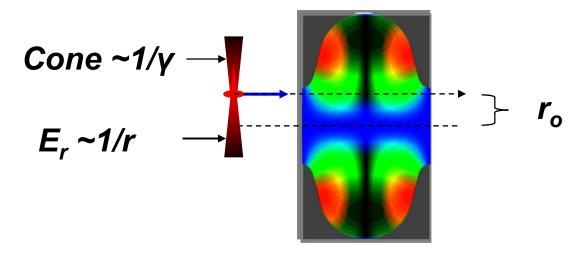

Geometrical factor

$$\Gamma[\Omega] \equiv Q_O \cdot R_S = \frac{\omega \int_V H^2 dV}{\frac{1}{2} \int_S H_S^2 dS}$$

When you know the Γ using a computer code, you can calculate the surface resistance R_S from the measured Q_O value.

 Γ is about 270 Ω for β =1 cavities with elliptical or spherical shape.

Charismatic RF Parameter of Cavity



Smaller value is preferred against electron emission phenomenon.

Ratio shows the limit in $E_{\rm acc}$ due to the break-down of superconductivity (Nb ~2000 Oe).

Longitudinal and Transverse Loss Factors

When ultra relativistic point charge q passes empty cavity,

HOM modes are excited in the cavity.

If those are damped fast enough, the following beam feel them and can be kicked.

Thus the beam can be degradated.

$(R/Q)_n$ of n-th HOM

HOM nth $(R/Q)_n$, a "measure" of the energy exchange between point charge and mode n ._

$$V_n = \sqrt{\int_{z_a}^{z_b} E_{n,z} \sin(\frac{\omega_n}{\beta c}(z - z_a)) dz}^2 + \left(\int_{z_a}^{z_b} E_{n,z} \cos(\frac{\omega_n}{\beta c}(z - z_a)) dz\right)^2$$

$$(R/Q)_n \equiv \frac{V_n^2}{\omega_n W_n}$$

Longitudinal and Transverse Loss Factors

The amount of energy lost by charge q to the cavity is:

J.Sekutwitz's Slide

$$\Delta U_q = k_{\parallel} \cdot q^2$$
 for monopole modes (max. on axis)

$$\Delta U_q = k_{\perp} \cdot q^2$$
 for non monopole modes (off axis)

where \mathbf{k}_{\parallel} and $\mathbf{k}_{\perp}(\mathbf{r})$ are loss factors for the monopole and transverse modes respectively.

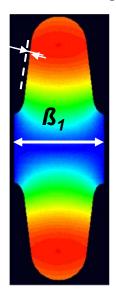
The induced **E-H field (wake)** is a superposition of cavity eigenmodes (monopoles and others) having the $E_n(r,\varphi,z)$ field along the trajectory.

For individual mode n and point-like charge:

$$k_{\parallel,n}^{\mathbf{p}} = \frac{\omega_n \cdot (R/Q)_n}{4}$$

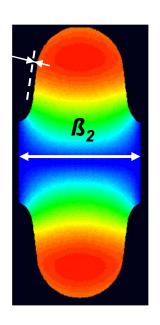
Similar for other loss factors......

These harmful HOM power should be take out from the cavity. ₂₁ Dr. Noguchi will make a lecture about the HOM coupler design.


Field flatness factor for elliptical cavities with arbitrary B=v/c

$$\frac{\Delta A}{A} = a_{ff} \cdot \frac{\Delta f}{f} \qquad a_{ff} = \frac{N^2}{k_{cc} \cdot \beta}$$

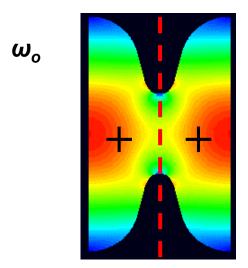
$$a_{\rm ff} = \frac{N^2}{k_{cc} \cdot \mathcal{B}}$$


This is an empirical correction, based on intuition.

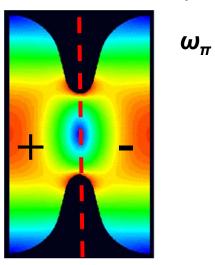
0x

The same error ∂x causes bigger ∂f when a cell is thinner

$$\frac{\partial f_1}{\partial f_2} = \frac{\partial \mathbf{x} \cdot \mathbf{\beta}_2}{\partial \mathbf{x} \cdot \mathbf{\beta}_1}$$



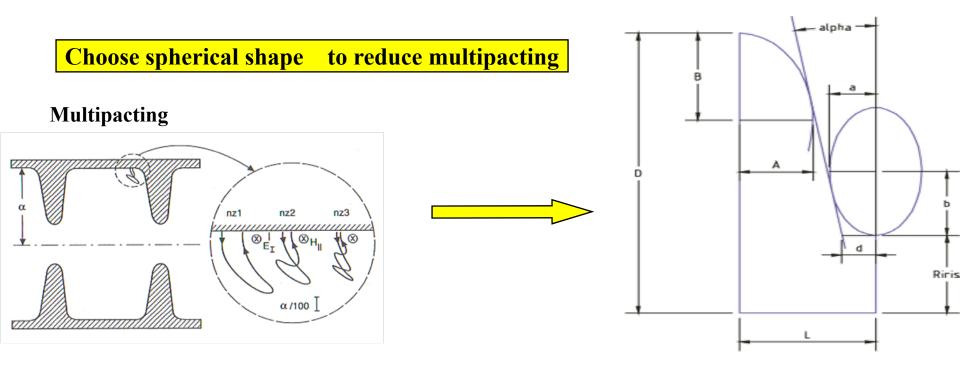
∂x


Cells which geometric \(\mathbb{S} < 1 \) are more sensitive to shape errors

Cell to cell coupling k_{CC}

The last parameter, relevant for multi-cell accelerating structures, is the coupling \mathbf{k}_{cc} between cells for the accelerating mode pass-band (Fundamental Mode pass-band).

no E_r (in general transverse E field) component at the symmetry plane


no H_{φ} (in general transverse H field) component at the symmetry plane

The normalized difference between these frequencies is a measure of the Poynting vector (energy flow via the coupling region)

$$k_{cc} = \frac{\omega_{\pi} - \omega_{0}}{\frac{\omega_{\pi} + \omega_{0}}{2}}$$

Spherical/Elliptical Shape in SRF cavity design

Design of SRF cavity is usually done with spherical or Elliptical shapes.

- R. Parodi (1979) presented first **spherical** C-band cavity with much less multipacting barrier than other cavities at that time.
- P. Kneisel (early 80's) proposed for the DESY experiment the elliptical shape of 1 GHz cavity preserving good performance of the spherical one and stiffer mechanically.

The RF cavity design tool will be given by Dr. U. van Rienen In this tutorial.

Optimization of Cell Shape

We begin with inner cells design because these cells "dominate" parameters of a multi-cell superconducting accelerating structure.

RF parameters summary:

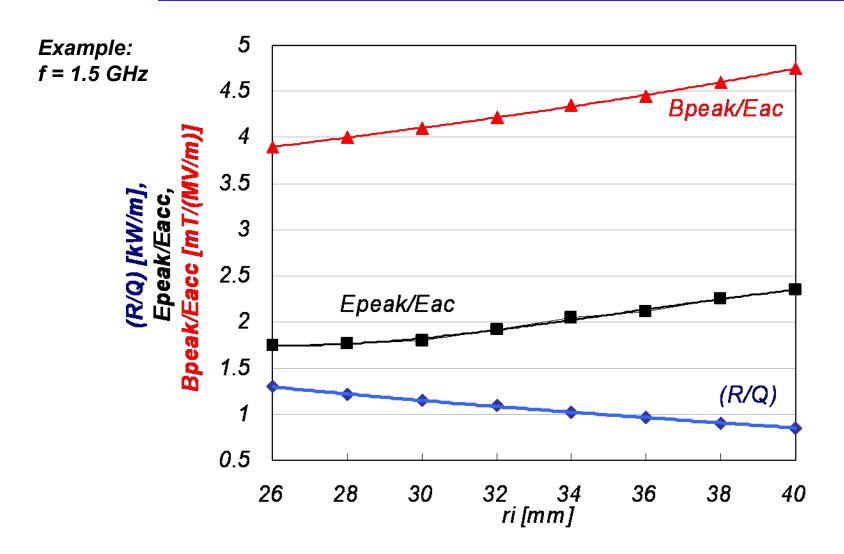
J.Sekutwitz's Slide

FM: (R/Q), G, E_{peak}/E_{acc} , B_{peak}/E_{acc} , k_{cc}

HOM: k_{\perp}, k_{\parallel}

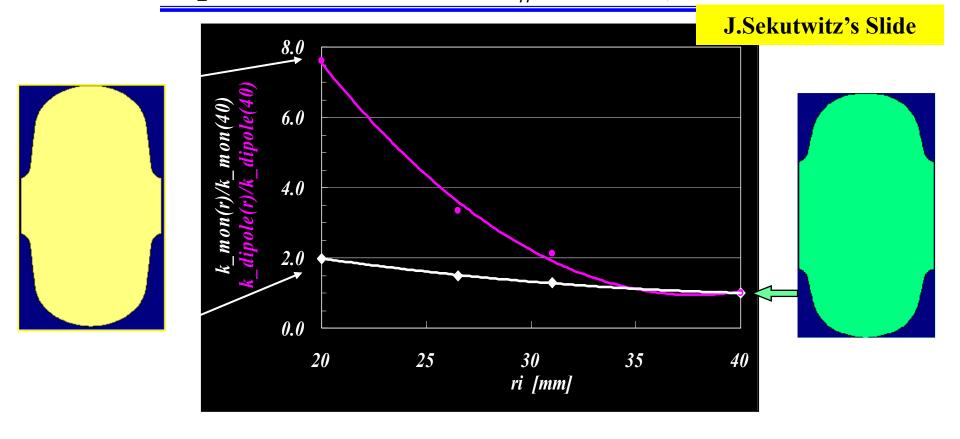
There are 7 parameters we want to optimize for a inner cell

Geometry:


iris ellipsis : half-axis h_r , $h_z \leftarrow$

iris radius :

equator ellipsis: half-axis h_r , h_z


There is some kind of conflict 7 parameters and only 5 variables to "tune"

Effect of Cavity Aperture on RF Parameters

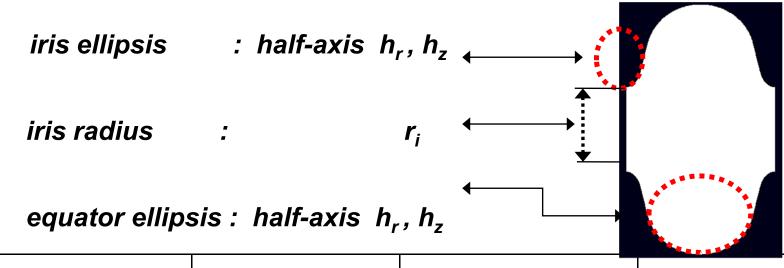
A. Mosnier, E. Haebel, SRF Workshop 1991

Aperture Effects on $K_{//}$ and K_{\perp})

$$(R/Q)$$
 = 152 Ω
 $B_{peak}/E_{acc} = 3.5 \, mT/(MV/m)$
 $E_{peak}/E_{acc} = 1.9$

$$(R/Q)$$
 = 86 Ω
 B_{peak}/E_{acc} = 4.6 mT/(MV/m)
 E_{peak}/E_{acc} = 3.2

Aperture Effect on Cell to Cell Coupling (K_{CC})


J.Sekutwitz's Slide

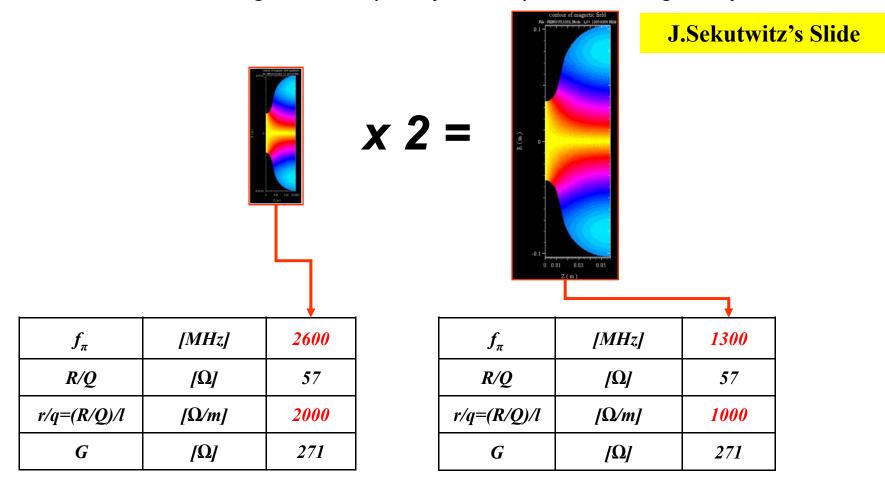
$$(R/Q)$$
 = 152 Ω
 $B_{peak}/E_{acc} = 3.5 \, mT/(MV/m)$
 $E_{peak}/E_{acc} = 1.9$

$$(R/Q)$$
 = 86 Ω
 B_{peak}/E_{acc} = 4.6 mT/(MV/m)
 E_{peak}/E_{acc} = 3.2

General Trends of Cavity Optimization on RF Geometrical Parameters

Criteria	Criteria RF-parameter		Cavity examples	
Operation at high gradient	$rac{E_{peak}/E_{acc}}{B_{peak}/E_{acc}}$ $lacksquare$	r _i Iris, Equator shape	TESLA, HG CEBAF-12 GeV	
Low cryogenic losses	(R/Q) ·Γ	r _i Equator shape	LL CEBAF-12 GeV LL- ILC cavity	
$\textit{High } I_{\textit{beam}} \leftrightarrow$	k . k		B-Factory	

 r_i

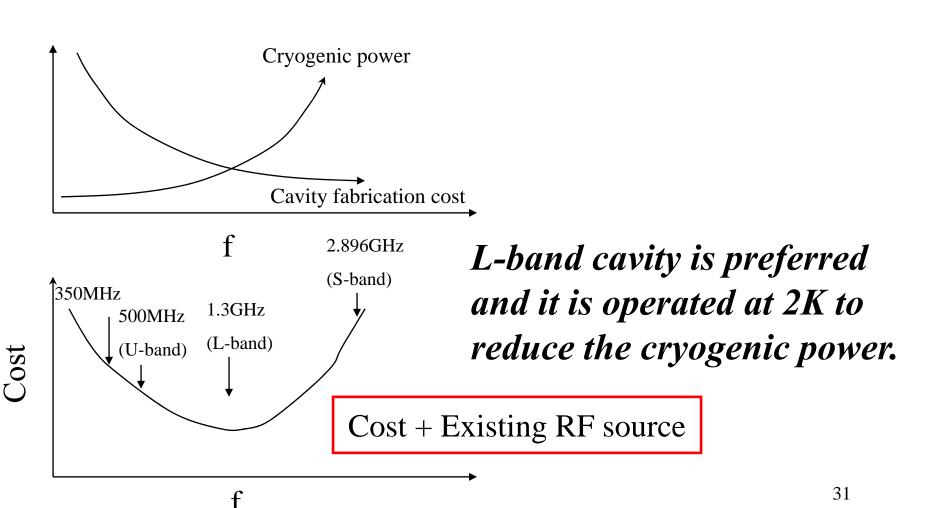

RHIC cooting

 k_{\perp}, k_{\parallel}

Low HOM impedance

Choice of the RF Frequency

What about accelerating mode frequency of a superconducting cavity?

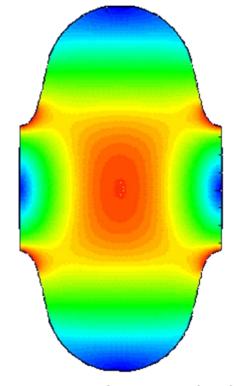


 $r/q=(R/Q)/I \sim f$

Frequency Choice of the SRF Cavity

$$P_{loss} = \frac{1}{2} R_s \int_S H_S dS \propto E_{acc}^2,$$

$$P_{loss} = \frac{1}{2} R_s \int_S H_S dS \propto E_{acc}^2, \qquad R_S(BCS) = \frac{A}{T} \cdot f^2 \cdot \exp(-\frac{\Delta}{k_B T})$$

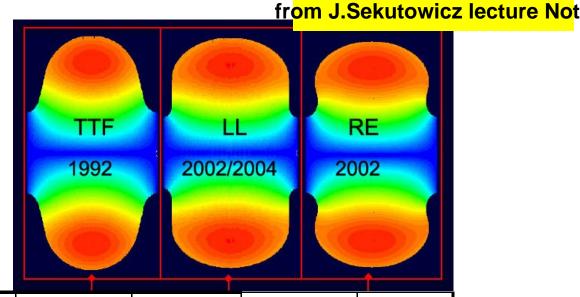


TESLA Cavity Inner Cell Shape

The inner cell geometry was optimize with respect to: low E_{peak}/E_{acc} and coupling k_{cc} .

At that time (1992) the field emission phenomenon and field flatness were of concern, no one was thinking about reaching the magnetic limit.

f_{π}	[MHz]	1300.0
r _{iris}	[mm]	35
k_{cc}	[%]	1.9
$E_{\it peak}/E_{\it acc}$	-	1.98
$B_{\it peak}/E_{\it acc}$	[mT/(MV/m)]	4.15
R/Q	$[\Omega]$	113.8
G	$[\Omega]$	271
R/Q*G	[Ω*Ω]	30840

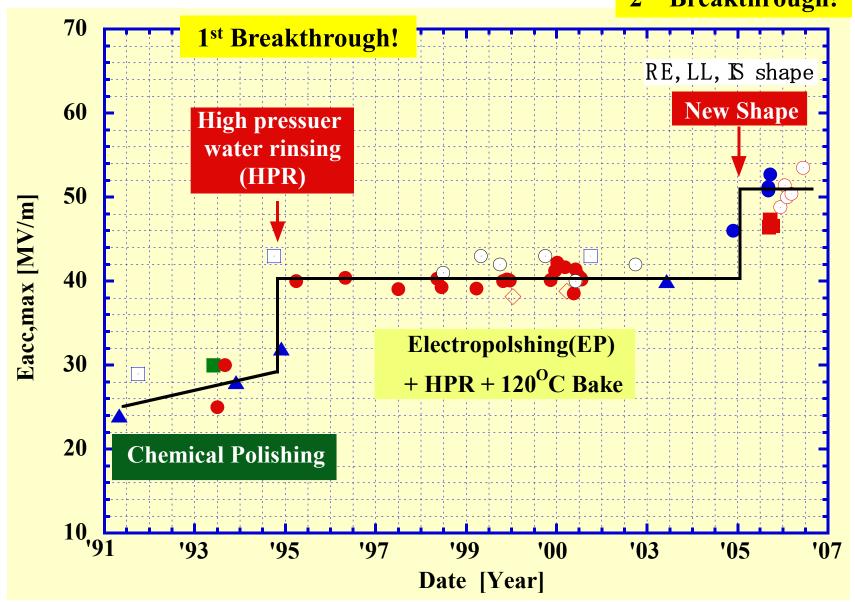

Inner cell; Contour of E field

High Gradient Shapes

Cavity shape designs with low Hp/Eacc

TTF: TESLA shape

Reentrant (RE): Cornell Univ. Low Loss(LL): JLAB/DESY Ichiro-Single (IS): KEK



	TESLA	LL	RE	IS
Diameter [mm]	70	60	66	61
Ep/Eacc	2.0	2.36	2.21	2.02
Hp/Eacc [Oe/MV/m]	42.6	36.1	37.6	35.6
R/Q [W]	113.8	133.7	126.8	138
G[W]	271	284	277	285
Eacc max	41.1	48.5	46.5	49.2

Eacc vs.

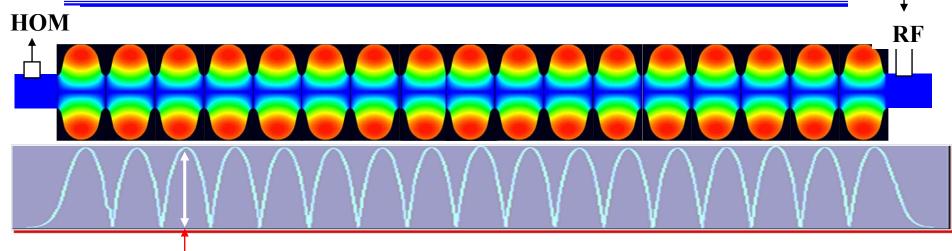
Year

2nd Breakthrough!

4. Criteria for Multi-cell Structures

Single-cell is attractive from the RF-point of view:

- → Easier to manage HOM damping
- → No field flatness problem.
- → Input coupler transfers less power
- → Easy for cleaning and preparation
- But it is expensive to base even a small linear accelerator on the single cell. We do it only for very high beam current machines.


A multi-cell structure is less expensive and offers higher real-estate gradient but:

- → Field flatness (stored energy) in cells becomes sensitive to frequency errors of individual cells
- → Other problems arise: HOM trapping...

How to decide the number of cells?

Parameters considered with N

$$\frac{\Delta A_i}{A_i} = a_{ff} \frac{\Delta f_i}{f_i} = \frac{N^2}{k_{cc}} \cdot \frac{\Delta f_i}{f_i}$$
Beam pipe has no acceleration beam.
BP reduce the efficiency.

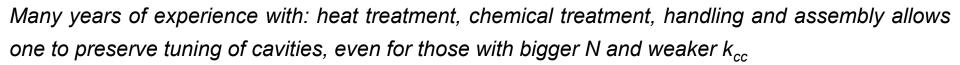
Multi-cell is more efficient

Multi-cell is more efficient.

Field flatness factor:

HOM trapped mode: More serious within creasing N

Input handling power: $P_{INPIJT} \propto N$

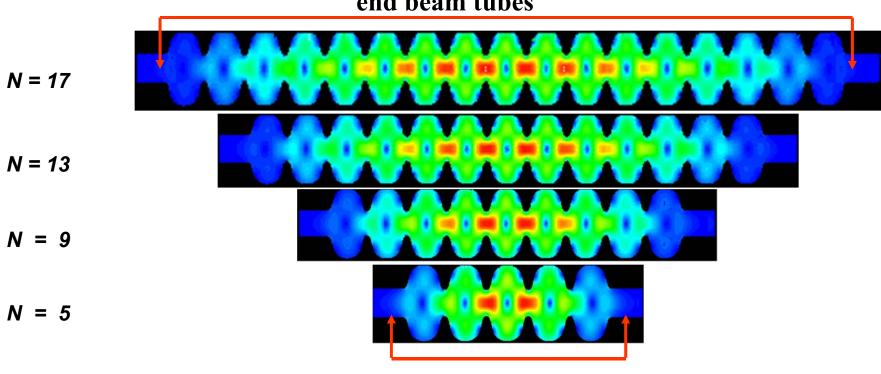

36 **Handling:** Easy to bend, Difficult to preparation

Effect of N on Field Flatness Sensitivity Factor

J.Sekutwitz's Slide

Field flatness vs. N

	Original Cornell	High Gradient	Low Loss	TESLA	SNS B=0.61	SNS B=0.81	RIA ß=0.47	RHIC
	N=5	N=7	N=7	N=9	<i>N</i> =6	<i>N</i> =6	<i>N</i> =6	N=5
year	1982	2001	2002	1992	2000	2000	2003	2003
a_{ff}	1489	2592	3288	4091	3883	2924	5040	850



For the TESLA cavities: field flatness is better than 95 %

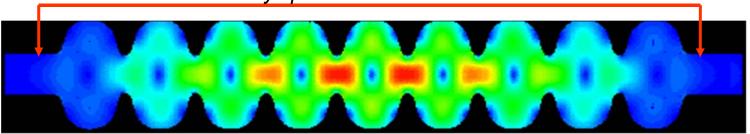
HOM trapping vs. N

J.Sekutwitz's Slide

No fields at HOM couplers positions, which are always placed at end beam tubes

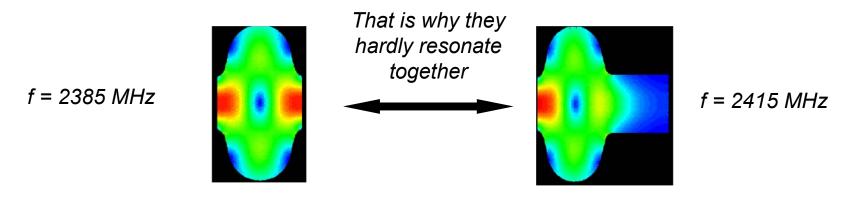
e-m fields at HOM couplers positions

Cure for the trapped mode: Make the bore radius larger.


Break mirror symmetry.

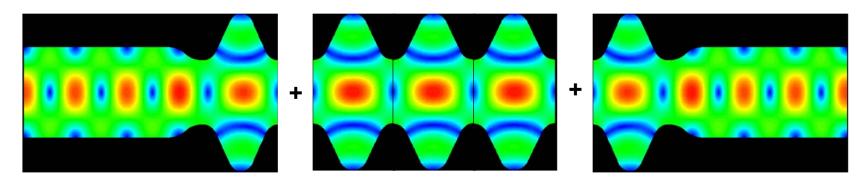
HOM Issue with Multi-Cell Structure

HOM couplers limit RF-performance of sc cavities when they are placed on cells


J.Sekutwitz's Slide

no E-H fields at HOM couplers positions, which are always placed at end beam tubes

The HOM trapping mechanism is similar to the FM field profile unflatness mechanism:


- → weak coupling HOM cell-to-cell, k_{cc,HOM}
- → difference in HOM frequency of end-cell and inner-cell

Adjustment of End-Cells

J.Sekutwitz's Slide

The geometry of end-cells differs from the geometry of inner cells due to the attached beam tubes

Their function is multi-folded and their geometry must fulfill three requirements:

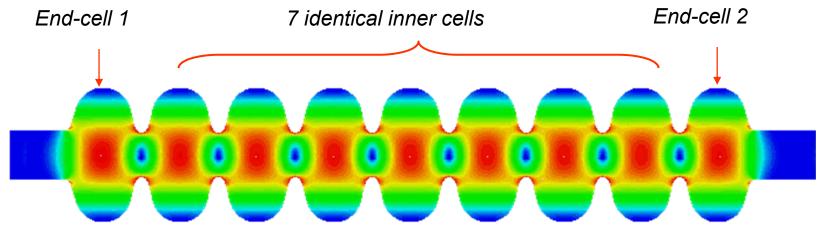
- → field flatness and frequency of the accelerating mode
- field strength of the accelerating mode at FPC location enabling operation with matched Qext
- → fields strength of dangerous HOMs ensuring their required damping by means of HOM couplers or/and beam line absorbers.

All three make design of the end-cells more difficult than inner cells.

Capable Input Power on N

Power capability of fundamental power couplers vs. N

When I_{beam} and E_{acc} are specified and a superconducting multi-cell structure does not operate in the energy recovery mode:


 $P_{INPUT} \sim N$

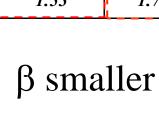
Coupler handling power limits the small N in the intensity frontier machine like KEK B(N=1).

KEKB: Acceleration beam current > 1 A.

TESLA/ILC Baseline Cavity

The cavity was designed in 1992 (A. Mosnier, D. Proch and J.S.).

TTF 9-cells; Contour of E field


f_{π}	[MHz]	1300.00
$f_{\pi-1}$	[MHz]	1299.24
R/Q	$[\Omega]$	1012
G	$[\Omega]$	271
Active length	[mm]	1038

Overview of Cavities

		U	VCI VIC	V VV UI	Ca	Y TUTOS	I Cal	14•49	CIL J.
Examples of	of Inner cel	le					J.Sel	<mark>kutwitz's</mark>	Silde
Lxamples c	n mner cen	13	new	new				new	new
		CEBAF Original	CEBAF -12 High	CEBAF -12 Low	TESLA	SNS	SNS	RIA	RHIC
		Cornell ß=1	Gradient ß=1	Loss ß =1	ß =1	ß=0.61	ß=0.81	ß=0.47	Cooler ß=1
f_o	[MHz]	1448.3	1468.9	1475.1	1278.0	792.8	792.8	793.0	683.0
f_{π}	[MHz]	1497.0	1497.0	1497.0	1300.0	805.0	805.0	805.0	703.7
k_{cc}	[%]	3.29	1.89	1.49	1.9	1.52	1.52	1.52	2.94
$E_{\it peak}/E_{\it acc}$	-	2.56	1.96	2.17	1.98	2.66	2.14	3.28	1.98
B_{peak}/E_{acc}	[mT/(MV/m)]	4.56	4.15	3.74	4.15	5.44	4.58	6.51	5.78
D /O	(0)	07.5	110	120.0	112.0	10.2	02.0	20.5	00.2

R/Q96.5 *112 128.8* 49.2 *83.8 28.5 80.2* Ω *113.8* \boldsymbol{G} *273.8 266* 280 *271 226* Ω *176 136* 225 R/Q*G18939 3876 $/\Omega*\Omega$ / 26421 29792 36064 30840 8659 18045 k_{\perp} ($\sigma_{\tau}=1mm$) 0.32 $[V/pC/cm^2]$ 0.22 0.53 0.23 0.13 0.11 0.15 0.02 k_{\parallel} (σ_z =1mm) 0.85 [V/pC]1.36 1.53 *1.71 1.46* 1.25 *1.27* 1.19

β vs RF parameters

ler Ep/Eacc larger
Hp/Eacc larger
(R/Q) smaller

43

5. Example of SRF High-beta Cavities

Cavities operating with highest I_{beam} or E_{acc}

Type /No. of cavities				P _{beam} /cavity [kW]	P _{HOM} /cavity [kW]
KEK-B 0.5 GHz	x 8	Single-cell with max I _{beam}	I _{beam} = 1.34 A 1389 bunches cw	350	16
HERA 0.5 GHz	c 16	Multi-cell with max I _{beam}	$I_{beam} \leq 40 \ mA$ $180 \ bunches$ cw	60	0.13
TTF-I , 1.3 GHz	x 1	Multi-cell with max E _{acc}	E _{acc} = 35 MV/m 1.3ms/pulse 1Hz PRF	~100 Almost no beam loading	0

Cavities which will operate with high I_{beam} in the near future

Type /No. cavities				P _{beam} /cavity [kW]	P _{HOM} /cavity [kW]
SNS B= 0.61, 0.805 GHz	x 33	Multi-cell with max	I _{beam} =38 (59) mA 1.3ms/pulse	240 (366)	0.06 peak
SNS B= 0.805 GHz	x 48	I _{beam}	DF = 6 %	482	0.06 peak
TTF-II ep , 1.3 GHz	x 8	Multi-cell with max E_{acc}	E _{acc} = 35 MV/m 1.3ms/pulse 10Hz PRF	146	< 0.02>