

Lee Jones Accelerator Physics Group

Accelerator Science and Technology Centre STFC Daresbury Laboratory

EWPAA 2017

European Workshop on Photocathodes for Particle Accelerator Applications 20-22 September 2017

Lee Jones Accelerator Physics Group

The TESS Facility: Photocathode energy spread measurements and the effects of surface roughness on photocathode performance.

- Overview of the TESS experimental system
- Energy spread & work function of rough cathodes
- New detector & laser-driven plasma light source
- Future work

Lee Jones Accelerator Physics Group

The TESS Facility: Photocathode energy spread measurements and the effects of surface roughness on photocathode performance.

- Overview of the TESS experimental system

- Energy spread & work function of rough cathodes
- New detector & laser-driven plasma light source
- Future work

Increasing beam brightness: Transverse and longitudinal energy distribution

- Brighter electron beams require reductions in the transverse and longitudinal energy distributions (TEDC & LEDC) of photocathode electron sources
- TESS is a flexible experimental system:
 - Various light sources
 - Liquid nitrogen photocathode cooling loop
 - Degradation / lifetime studies
 - Connection to vacuum suitcase various cathodes
- System connected to our III-V Photocathode Prep. Facility

TESS - The Transverse Energy Spread Spectrometer

Increasing beam brightness: Transverse and longitudinal energy distribution

TESS - The Transverse Energy Spread Spectrometer

TESS Commissioning: TEDC measurements with different wavelengths of light $\lambda = 635$ nm

 $\lambda = 532 \text{ nm}$

$$U_{\rm acc} = 60 \text{ V}$$

$$U_{\rm acc} = 230 \text{ V}$$

21.06.2013 p-GaAs(Cs,O) photocathode $d \approx 43$ mm T = 300 K

TESS Commissioning: Summary of TEDC results

21.06.2013 p-GaAs(Cs,O) photocathode $d \approx 43$ mm T = 300 K

 $U_1 = 60 \text{ V}$ $U_2 = 2/3 \times 60 = 40 \text{ V}$ $U_3 = 1/3 \times 60 = 20 \text{ V}$ $U_{\text{ph}} = -10 \text{ V}$ to +10 V

- Non-imaging technique Uses the MCP front plate as a charge collector
- Cathode bias $(U_{\rm ph})$ swept in small steps
- Photocurrent measured from MCP_{front} using phase-sensitive detection
- Variant of the 'parallel plate' setup installed at the ISP

The current measured through MCP_{front} contains information on the longitudinal energy content of the photo-emitted electrons

Differentiating the photocurrent reveals the longitudinal energy spread, and allows us to extract the LEDC for the photo-emitted electrons

 Poster: Measurement of the Longitudinal Energy Distribution of Electrons in Low Energy Beams using Electrostatic Elements
 D.P. Juarez-Lopez, L.B. Jones, T.C.Q. Noakes, C.P. Welsch, L. Devlin, O. Karamyshev, B.L. Militsyn

The TESS Facility: Photocathode energy spread measurements and the effects of surface roughness on photocathode performance.

- Overview of the TESS experimental system
- Energy spread & work function of rough cathodes
- New detector & laser-driven plasma light source
- Future work

14

- Three metal photocathode samples tested: 2 × Cu and 1 × Mo
- Surface roughness measured using 2 techniques:
 - DME HS100M AFM with a DS 95-50 scanner ($50 \times 50 \,\mu m^2$)
 - ADE PhaseShift MicroXAM $(173 \times 131 \,\mu m^2)$

Sample	AFM [nm]		μΧΑΜ	[nm]
	TPH (<i>S</i> _{<i>z</i>})	RMS (S_q)	TPH (<i>S</i> _{<i>z</i>})	RMS (S_q)
Cu.DT	728.6	83.4	919.7	81.9
Cu.EF	1083.2	143.9	1080.0	147.2
Мо			1691.6	241.4

Where
$$S_q = \sqrt{\frac{1}{MN} \sum_{j=l}^{N} \sum_{i=l}^{M} \eta^2(x_i, y_j)}$$
 and $S_z = \frac{1}{5} \left[\sum_{i=l}^{5} |\eta_{pi}| + \sum_{i=l}^{5} |\eta_{vi}| \right]$

- Samples were de-greased in acetone, then argon plasma-cleaned
 - Henniker Plasma HPT-200, 20 minutes @ 200 W
- Samples loaded into the PPF and heat-cleaned in-situ
 - 450 °C for 1 hour (base pressure typically 5E⁻¹⁰ mbar)
- Samples then transferred into the TESS (typically 4E⁻¹¹ mbar)
- TEDC measured at various illumination wavelengths

Graph showing fitted curves to data taken for the Cu.DT sample

Wavelength, λ [nm]	Sample, MTE [meV]		
	Cu.EF	Cu.DT	Мо
266	137.2	162.6	225.9
271	105.7	135.7	186.4
276	87.1	100.9	158.5
281	73.8	77.9	136.4
286	53.0	59.4	111.7

Table summarising the MTEs for all of the photocathode samples

Graph showing the trend in the MTE for all photocathode samples

Threshold of photoemission: MTE = $kT \rightarrow$ Can extract λ and hence ϕ_0

Sample	Workfunction, ϕ_0 [eV]		
	Published	Measured	
Cu.DT	465 *	4.26	
Cu.EF	4.05	4.24	
Мо	4.0 - 4.3 **	4.11	

* O. Renault, R. Brochier *et al.*; Surf. Int. Anal. 38, 375 (2006)
** R.G. Wilson; J. Appl. Phys. 37 (8), 3170 (1966)

Table summarising the workfunctions for all of the photocathode samples

Conclusions from this work:

- Surface roughness and workfunction affect the MTE of a photocathode
 - Results not as expected
- Extrapolation of the MTE at different illumination wavelengths to the kT threshold provides a useful measure of the photocathode workfunction
- Insufficient data to extract meaningful conclusions
- Laboratory relocation dictated that work be suspended
- Further work planned using a wide range of photocathode samples

The TESS Facility: Photocathode energy spread measurements and the effects of surface roughness on photocathode performance.

- Overview of the TESS experimental system
- Energy spread & work function of rough cathodes
- New detector & laser-driven plasma light source
- Future work

- Relocation of the Cockcroft Institute has forced a suspension in work due to laboratory relocation
 - An opportunity!
- New (larger) VISTA laboratory space created:

Vacuum Interface and Surface Technologies for Accelerators

• Currently re-populating new laboratory with experimental systems, and re-commissioning/upgrading systems

TESS Detector upgrade: No grids and increased screen intensity

Original 3-grid electron multiplier and imaging detector

TESS Detector upgrade: No grids and increased screen intensity

New electron multiplier and imaging detector with single demountable grid 25

TESS Light source upgrade: New broadband light source

Energetiq EQ-99X laser-driven plasma broadband light source

TESS Light source upgrade: New broadband light source

AST-XE-175EX 200 W xenon bulb source

EQ-99 laser-driven plasma light source

The TESS Facility: Photocathode energy spread measurements and the effects of surface roughness on photocathode performance.

- Overview of the TESS experimental system
- Energy spread & work function of rough cathodes
- New detector & laser-driven plasma light source
- Future work

Future work:

Coming weeks:

- Configure LDPLS light source and install on the TESS
- obtain first electron emission footprint from the new TESS detector (re-commissioning)

Coming months:

- Experiments on different metallic samples
 - Cu, Mo, Nb, Ag, Mg, Pb, Y (and some oxides?)
 - Mixture of single-crystal and polycrystalline samples
 - Measured levels of surface roughness

Longer term:

- Experiment to map surface QE of soft copper (W. Wuensch)
- MTE measurements of CsTe photocathodes from CERN

Thank you!

The ASTeC photocathode team:

Dr. Tim Noakes	Sonal Mistry	(Ph.D. student)
Dr. Boris Militsyn	Pavel Juarez	(Ph.D. student)
Dr. Lee Jones	Victor Chang	(Ph.D. student)
Dr. Keith Middleman	Bruno Camino	(now Post Doc.)
Dr. Reza Valizadeh	Tom Beaver	(UG student)
Dr. Mark Surman	Ryan Cash	(engineering)
Prof. Elaine Seddon (consultant)	Barry Fell	(engineering)

The ISP photocathode team:

Prof. Alexander Terekhov Dr. Heinrich Scheibler Dr. Sergei Kosolobov

Vasiliy Bakin Dmitry Gorshkov Stanislav Rozkov

lee.jones@stfc.ac.uk

EXTRA SLIDES

(Courtesy: S. Mistry)

Roughness measurements using MicroXAM for Cu.DT and Cu.EF samples 32

The PPF comprises a loading chamber (LC), atomic hydrogen cleaning chamber (AHC), and a photocathode preparation chamber (PC)

Increasing beam brightness: The intrinsic energy of NEA GaAs photocathodes

TESS - The Transverse Energy Spread Spectrometer

TESS Commissioning:

TEDC measurements at different accelerating voltages

17.06.2013 p-GaAs(Cs,O) photocathode

TESS Commissioning: TEDC measurements at different accelerating voltages

d = 33 mm $\lambda = 635 \text{ nm}$ T = 300 K

17.06.2013 p-GaAs(Cs,O) photocathode