

GaN-based photocathodes for high brightness electron beams

Bundesministerium für Bildung und Forschung

Marc Schumacher

HOPE II

Aims

- Synthesis and modification of GaN films
- Characterisation of the synthesis parameters and topographical effects
- Focus of research:
 - \rightarrow High QE
 - \rightarrow Long lifetime
 - \rightarrow Film-substrate adhesion

Gallium nitride - GaN

Properties

- Semiconductor
- Wide bandgap ≈ 3.4 eV (@ 300 K)
- Melting point > 2500 °C
- Crystal structure: wurtzite (hexagonal crystal system)

Applications

- Light-emitting diodes
- Photocathode
 - \rightarrow Can be used in the λ -range between 150 400 nm
 - → High QE expected (\geq 50 %)
 - ightarrow Thermal and chemical stability

→ High potential barrier for the electrons (vacuum energy, E_{vac}) → Hence, the excited electrons can not leave the surface!

 \rightarrow Enhancement of the electron diffusion length by **p-type doping with Mg**

Cs-deposition

→ Achievement of a NEA surface by a Cs-adsorption → NEA = E_{vac} - E_c < 0

Synthesis of GaN films

RF magnetron sputtering

- Positive ions are accelerated to the negatively charged target and the gallium atoms will be sputtered
- Target-charging is avoided by an alternating potential

4 targets are required!

9

- Potential substrates: Si, Cu, Nb, Mo and Ta ۲
- \rightarrow High purity is required (\geq 6N)
- ٠

Potential targets: Ga, GaN and GaAs

 \rightarrow Low melting point of pure Ga (T_M = 29.76 °C)

RF magnetron sputtering

RF magnetron sputtering

Process parameters

- Cathode power
- Ar-pressure
- N₂- pressure
- Substrate temperature
- Bias-voltage

Experimental setup

• In situ QE-measurement

Surface modification of GaN films

- Combination of physical- and chemical etching
- Aim of the RIE is the formation of various GaN film topographies, subsequently correlated with the QE

Characterisation of GaN films

Thin film analysis

- Morphology and crystal growth:
 - \rightarrow AFM \rightarrow SEM
- Crystal structure:
 → XRD
- Chemical bonding structure:
 → XPS
- Film/substrate adhesion:
 - \rightarrow Tape test
 - → Scratch-Test
 - \rightarrow Nanoindentation

Film-substrate adhesion

- Tape Test (ASTM D3359 17)
 - \rightarrow Applying and removing a tape
 - \rightarrow Adequate level of adhesion?
- Scratch-Test (DIN EN ISO 20502)
 - \rightarrow Linear increasing normal load
 - ightarrow Critical load depends on the adhesion
 - \rightarrow Nanoindentation (low load regime, μ N; small areas)

Film-substrate adhesion

• Higher critical load for Ti interlayers

 \rightarrow Higher Film/interlayer adhesion

GaN/Ti/Cu

QE-measurement

First experimental results

Synthesis of GaN films

- GaAs target (purity = 99,9999 %)
- Sputtered in a pure N₂ plasma discharge
- RF power of 100 W is applied for 1 h
- Substrates: Si (111) and Cu
- Paramater variation

→ Substrate temperature (RT – 800 °C) → N_2 pressure (0,2 – 1,6 Pa)

1" Cu substrate

19.09.2017

Crystal structure

 \rightarrow (0002)-orientation at high substrate temperature and low N₂ pressure

Marc Schumacher

- Aim is to synthesize GaN films without As
- Higher negative enthalpy of formation of GaN (-109,5 kJ/mol) than that of of GaAs (-81,5 kJ/mol)
- 100 % N₂

→ Higher concentration of N₂ containing species in the plasma compared to As species

- High substrate temperatures
 - \rightarrow Decreasing As-content

- As-atoms within all samples
 - → With the abovementioned parameters, it is not possible to synthesize GaN films without As by using a GaAs target

Marc Schumacher

Outlook

- Identify an ideal...
- \rightarrow Target (Ga, GaAs, GaN)
- \rightarrow Substrate (Si, Mo, Cu, Nb and Ta)
- \rightarrow Interlayer (AIN, TiN, ZnO)
- Implementing of the QE measurement setup
- 4 targets

→ Ga source
 → Band gap modification

→ p-type doping → Interlayer

• Surface modification

Thank you for your attention!

Light source

5 nm Spectral Resolution

Monochromator

Specifications							
Configuration	Czerny-Turner	1					
Slits	10 µm to 10 mm variable, manual or motorized		W NOT	•		Optional exit slit (90°)	
Slit height	20 mm			Entrance s	slie <mark>i i i i i i i i i i i i i i i i i i </mark>	Exit sli	
Number of gratings	1, 2 or 3			-			
Grating size	68 mm x 84 mm						
Aperture ratio	f/4.1 (at all grating angles)						
Resolution	0.1 nm at reduced slit height, 0.3 nm with full slit height of 20 mm, both measured with 1200 l/mm grating		Ordering informat	ion gratings			
Wavelength acquisition speed	1000 nm/s		Partnumber	Lines per mm	Blaze wavelength	Theoretica resolution for 1 mm slit	
Wavelength	+0.2 nm over full range of 1200 l/mm arating			(.,,	(nm)	(nm)	
accuracy	2012 Interest for for for fighting		High-resolution UV gratings				
Wavelength	±0.05 nm (1200 l/mm)						
тергоаостоппу			MSG-T-1800-250	1800	250	2	
Weight	14 kg		MSG-T-1800-500	1800	500	2	