Metadata, workflows and machine learning

Thomas Proffen

Oak Ridge National Laboratory

tproffen@ornl.gov

ORNL is managed by UT-Battelle for the US Department of Energy

Materials research crosses experimental and computing facilities

User Facilities

Variety of experiments, topics, methods and 'computer literacy' of users present significant challenge.

Integrating data acquisition, instrument control and data reduction

Supporting day-to-day needs from data collection, reduction and analysis to modeling.

Data published in : M.E. Casco, Y.Q. Cheng, L.L. Daemen, D. Fairén-Jiménez, E.V. Ramos-Fernández, A.J. Ramirez-Cuesta, and J. Silvestre-Albero, Chem. Comm. (2016) 52, 3639

Automatic data reduction for HFIR SANS instruments implemented

40

4.0

- Mantid based automatic data reduction was implemented on GP-SANS and Bio-SANS.
- Configuration based setup
 - 1. Instrument staff sets up a configuration parameters for experiment.
 - 2. The users completed auto-reduction parameter table.
 - 3. Mantid script executed data reduction using parameters in table.
- Web based interface.
- Additional work under way to simplify operation by propagating meta data from Data Acquisition System to pre-fill setup parameters.

DGE ■ Catalog III Configuration - III Re	duction -					
Home / Configuration / Configuration 3 r						
	Settin	a configur	ation scree	en		
ConfigurationConfig		5 - 5				
Comgulationcomg						
Title			Configuration 3 met	ters		
Instrument			HFIR : GPSA	NS		
Wavelength (Å)			6	.00		
Wavelength Spread (%)			0	.15		
Sample Detector Distance (m)			3.	000		
E 📕 Catalog 🗮 Configuration - 🎬 Re						
Home / Reduction / new	Auto rodu	ation conf	iguration a	or		
	Auto-redu	CUON COM	iguration s	CI		
Reduction new						
Thie				_		
Reduction of Low, Medium and High Q fo	er test sample					
lpts*						
IPTS-17453						
Region 1	F	Region 2	Region 3			
Region*						
Comments Reduction for Low Q						
Any necessary comments						
Our Frankland						
Configuration*						
Empty beam*						
HFIR/CG2/PTS-0828/exp152/Datafiles/	CG2_exp152_scan0006_0101.xml	06_0101.xml				
Sample Scattering	Sample Transmission	Backgroung Scattering	Backgroung Transmission	4		
CG2_exp152_scan0001_0101	CG2_exp152_scan0001_0103	CG2_exp152_scan0001_0104	CG2_exp152_scan0001_0105	н		
CG2_exp152_scan0001_0102	CG2_exp152_scan0001_0103	CG2_exp152_scan0001_0107	CG2_exp152_scan0001_0108			
				11		

Refining force field parameters from neutron quasi-elastic data

NEUTRON

SOURCE

- First refinement framework test case.
- High concentrations of LiCl allow studies of bulk water dynamics under 200K. LiCl induces polarization of the water.
- NAMD simulations

http://camm.ornl.gov

Assessment of the Effectiveness of Data Collection, Reduction, and Analysis

Shelly Ren & Peter Parker Scientific Information Systems

ICAT history and Limitations

- ICAT has been in production to catalog SNS metadata since 2006
- ICAT web services provide metadata to Mantid client, SNS monitor, user portal, and software tools
- Metadata Type has to be predefined and can only have a single type
- Retrieving metadata from datafiles involves a large number of entities in the relational database
- Need to manage fine-grained rules to enable authorization
- Deployment or upgrade is not a trivial task

ONCat Strategy and Development

- MongoDB, a "NoSQL" document store that preserves hierarchical metadata and scales well for our purposes
- Redis for caching and a relational DB for authorization
- Python/Flask to build API
- Vue.js and Vuetify to build ONCat web application
- Docker containers to ensure consistent environments across development, testing, and production.

ONCat Web Application

	ONCat	Explore >	SNS > COF	RELLI								3qr	8
												<u> </u>	
	Explore												
	Select a F	acility											
					Эн	IFIR	NS						
	Select an	Instrumer	at			4 - A	199935			C			8.
	Select all	instrumer											
7	ARCS	BSS	CNCS	CORELLI	EQSANS	HYS	MANDI	NOM		PG3	REF_L	REF_M	
			SEQ	SNAP	TOPAZ	USANS	VENUS	VIS	VL	JLCAN			
	Select an	Experime	nt		No. of Concession, Name	10			4 8			ا منده	
	-								_				
				super					Q				
													_
ŝ	N	ame	Title				Users		From		To↓	Datafiles	
	IPTS-1	9613	Identifying the structural inhomogeneity in superconductors La2-xSrxCuO4			Liu, Yaoh Hu	ца;	2017/08/04		2017/11/29	534	4	
-	IPTS-1						Rosenkra						

ONCat Web Application

```
"name": "IPTS-19613",
"id": "IPTS-19613",
 indexed": [
  "run_number"
  xts":
  '.nxs.h5"
ь
"earliest": {
 "modified": "2017-08-09T09:12:57.269000-04:00",
 "ingested": "2017-08-09T09:12:57.269000-04:00",
 "created": "2017-08-04T16:37:59.352000-04:00"
  ags":
  'type/raw
ь.
"type": "experiment",
"latest": {
 "modified": "2017-11-29T14:10:57.775000-05:00",
 "ingested": "2017-11-29T14:10:57.775000-05:00",
 "created": "2017-11-29T14:10:46.865000-05:00"
},
"size": 534,
"title": "Identifying the structural inhomogeneity in superconductors La2-xSrxCu04",
"users": [
   "name": "Liu, Yaohua",
   "id": "ynl"
```

JSON data from Experiment

NSLS-II Data Broker concept

Curtesy of Stuart Campbell.

...and how the components work together

SPALLATION NEUTRON

SOURCE

13

Data Broker: A Unified Interface to Data

- The databroker keeps I/O concerns separate from scientific code.
- The system is un-opinionated about data formats.
- It provides metadata/data as key-value pairs ("dictionaries" in Python) and arrays in memory.

Opportunities using Machine Learning

Al is about how we use and process data. It will be, and is, transformative in knowledgebased disciplines. Al will not replace scientists, but scientists who use Al will replace those who don't*.

*Modified from a quote in the Microsoft report, "The Future Computed: Artificial Intelligence And Its Role In Society"

MACHINE LEARNING

A machine learning method takes a bunch of data and "learns" from it!

DID IT "LEARN" SOMETHING?

Label: Not a pig

Label: Pig

Label: Pig

Label: Not a pig

Label: Not a pig

Label: Pig

Training Data

The data we give to the machine learning method to learn from

Testing Data

The data we hold out and use to check to see if the method actually learned something!

DEEP LEARNING

Simulated scattering 'images'

- Small Angle Scattering
- Diffraction
- Diffuse Scattering
- Quasi Elastic Scattering

Labels

- Relate to model / parameters
- Related to topology
- Good/Bad

Training Data

The data we give to the machine learning method to learn from

Testing Data

The data we hold out and use to check to see if the method actually learned something!

Machine Learning for classification

Figure 2: Comparison between synthetic images and real experimental images. The first and second rows are real experimental images, while the third and forth rows are synthetic images. Images in the same column have the same attribute. From left to right, the attributes are: Ring: Isotropic, Ring: Anisotropic, Halo: Isotropic, Halo: Anisotropic, Diffuse low q: Isotropic, and Diffuse low q: Anisotropic. Visually, synthetic and real images are indiscernible. 2017 IEEE Winter Conference on Applications of Computer Vision

X-ray Scattering Image Classification Using Deep Learning

Boyu Wang¹, Kevin Yager², Dantong Yu², and Minh Hoai¹ ¹Stony Brook University, Stony Brook, NY, USA {boywang, minhhoai}@cs.stonybrook.edu ²Brookhaven National Laboratory, Upton, NY, USA {kyager, dtyu}@bnl.gov

Thank you

1

Thomas Proffen tproffen@ornl.gov

I ITAL ST AL

http://neutrons.ornl.gov