

Kai Neldner¹, Susan Schorr^{1, 2}, Daniel Többens¹, Pamela Whitfield³, Galina Gurieva¹

Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

² Freie Universität Berlin, Malteserstr. 74-100, 12247 Berlin, Germany

³ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Phase content and structural analysis of off-stoichiometric Cu₂ZnSnS₄ (CZTS)

Motivation

Thin film solar cells based on Cu₂ZnSn(S,Se)₄ (CZTSSe) as absorber layer have seen a rapid development leading to a world record efficiency of 12.6% [1].

Properties of CZTS

- abundant
- optical band-gap energy of 1.5 eV
- optical absorption coefficient of 10⁴ cm⁻¹

Synthesis by solid state reaction

In literature four different cation substitution processes to build defect complexes for off-stoichiometric CZTS are proposed [4].

- ► A-, B-, C- and D-type (E- and F-type proposed by our group)
- most efficient solar cells correspond to A-type (Cu-poor, Zn-rich) expected point defects: copper vacancies (V_{Cu}) and Cu-Zn antisites.

Synthesis starts with pure elements in sealed silica tubes

1) heating with 10 K*h⁻¹ to 250°C, 450°C, 600°C, 820°C / hold for 240 h / cooling to room temperature (50 K*h⁻¹) ► 1st synthesis step

Goal ► learn more about ...

- stability of off-stoichiometric kesterite type phase and corresponding secondary phases
- structural origin of cationic point defects
- point defects and cation distribution

2) homogenization of material (grinding, pressing pellets) annealing at 750°C for 240 h / cooling to room temperature (50 K*h⁻¹) > 2nd synthesis step

First synthesis step: elements, sealed tube with pyrolytic graphite boat, synthesized material, powder (from left to right)

Ternary diagrams Cu₂S-ZnS-SnS₂

Characterization by electron microprobe (WDX) and X-Ray diffraction (XRD)

cation sites cation sites Calculation of the average neutron scattering length of the cation sites: 2a, 2c, 2d and 2b [6]. a) A-B-type mixture Cu/(Zn+Sn) = 0.995 Zn/Sn = 1.067 b) B-F-type mixture ► Cu/(Zn+Sn) = 0.997, Zn/Sn = 1.049.

Results

- synthesized samples contain off-stoichiometric kesterite as main phase
- in total 20 synthesized samples > 8 single phase > Cu-poor, Zn-rich composition
- annealing is a prerequisite for good quality powder samples (homogeneous kesterite type phase)
- anomalous X-ray diffraction suitable method to distinguish isoelectronic cations
- sample preparation is really important (well-ground samples are needed)
- Rietveld analysis of data has to be done with great care to get reliable cation distributions
- neutron diffraction suitable method to distinguish isoelectronic cations
- Rietveld analysis of T.O.F spectra and average neutron scattering method less cation distribution [6] cation distribution of analyzed samples correspond to defect complexes proposed in literature [4]

[1] Wang et al., Adv. En. Mat. (2013) [2] Raulot, et al., J. Phys. Chem. Solids 66 (2005) 2019. [3] Hall et al., Can. Mineral. 16 (1978) 131 [4] Lafond et al., Z. Anorg. Allg. Chem., 638, 2571–2577 (2012) [5] Oleksyuk et al., J. Alloys Comp. 368 (2004) 135 [6] Schorr, Sol. Energ. Mat. Sol. Cells, 2011. 95(6): 1482-1488.

Acknowledgment

This work was financially supported by the HZB Graduate School MatSEC (Materials for Solar Energy Conversion).

Kai Neldner kai.neldner@helmholtz-berlin.de Fon +49-30-8062-43098

www.helmholtz-berlin.de