

Jannik Möser<sup>1,†</sup>, Klaus Lips<sup>1</sup>, Bernd Rech<sup>2</sup>, Alexander Schnegg<sup>1</sup> <sup>1</sup>Berlin Joint EPR Lab, Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin for Materials and Energy <sup>2</sup>Institute for Silicon Photovoltaics, Helmholtz-Zentrum Berlin for Materials and Energy

<sup>†</sup>Mail: jannik.moeser@helmholtz-berlin.de



# **IMPROVING THE DETECTION LIMIT OF QUANTITATIVE EPR ON** SILICON DANGLING BOND DEFECTS BY RAPID SCAN EPR

## **STRUCTURAL DEFECTS IN THIN-FILM SILICON**

Thin-film Si solar cells: a-Si, µc-Si, poly-Si • Reduce material cost to increase price efficiency

**Electronic defects limit solar cell efficiency** 



## **CW EPR: DEFECT COUNTING**

## Signal intensity from cwEPR signal

• Field modulation: derivative spectrum • Signal intensity from double integral

cw derivative

• Currently 9-12 % for TF devices (c-Si wafer: 25 %)

### **Amorphous silicon: dangling bond defect**

- Broken bond: three-fold coordinated Si atom
- Recombination center for charge carriers (voltage and current losses  $\rightarrow$  efficiency decrease)



#### **Dangling bond: paramagnetic** • EPR signal at $g_{db}$ = 2.0055

## Use EPR for defect analysis

- Quantitative EPR for spin counting
- Link defect density to efficiency
- Microscopic structure of defects





$$DI = c \cdot \frac{\sqrt{P} \cdot B_{\rm m} \cdot Q \cdot n_{\rm B} \cdot S(S+1)}{f(B_1, B_{\rm m})} \cdot N_S$$

**Reference** sample for calibration • Sample with known number of spins (e.g. a-Si:H)

#### **Problem: sensitivity limit of cwEPR** • Currently 10<sup>11</sup>-10<sup>12</sup> spins detectable (12 h) • Enhanced material quality: increase sensitivity • Alternative: rapid scan EPR



## **RAPID SCAN EPR**

## Motivation: S/N enhancement for a-Si:H

- rsEPR Technique developed by Eaton group
- Large S/N benefit for samples with long relaxation times
- Goal: realize rsEPR in a standard Bruker setup

## Principle

- Pass resonance fast with respect to  $T_1$  and  $T_2$ 
  - $\rightarrow$  Change EPR saturation behavior
- Passage effects: "wiggles" following signal



**4.6 MG/s** 

○ ○ 1.26 MG/s 🕸 0.42 MG/s

△ CW

0

## S/N STUDY ON A-SI:H OF VARYING QUALITY

## rsEPR vs. cwEPR on a-Si:H

- Compare S/N of a-Si:H samples with different deposition conditions and defect concentrations (10<sup>12</sup> to  $10^{15}$  spins)
- Use commercial pulse spectrometer (Bruker Elexsys E580)

#### S/N increase by up to a factor of 90



#### on the same a-Si:H samples recorded with magnetic field modulation of 2 G at 100 kHz





Vector model "Rapid": **B**<sub>eff</sub> rotation faster than  $T_1$  and  $T_2$ 



Non-adiabatic passage



- Magnetization cannot "follow" magnetic field **B**<sub>eff</sub>
- *M* close to equilibrium value • Precession in xy-plane  $(\rightarrow wiggles)$

#### **Deconvolution**

- Signal: convolution of excitation and spin response (FID)  $r(t) = h(t) * d(t) \Leftrightarrow H(\omega) = R(\omega)/D(\omega)$
- Driving function (excitation)  $d(t) = e^{i \phi(t)} = e^{i \int \Delta \omega(t) dt}$
- $\Rightarrow$  EPR absorption from FT of rsEPR and driving function (see Tseitlin et al.: J. Magn. Reson., 2011)

## • Factor of 8000 in acquisition time

- Largest benefit for lowest number of spins (highest electronic quality)
- $\Rightarrow$  rsEPR: increased EPR sensitivity for dangling bond defects in silicon

## **QUANTITATIVE RAPID SCAN EPR**

Ratio of rs and cwEP

signal intensities for

dangling bond defects

a-Si:H samples with varying number of

Number of spins from rsEPR signal • Signal intensity proportional to number of spins? Compare cw and rs intensities for seven a-Si:H samples (10<sup>12</sup> to 10<sup>15</sup> spins)







0.15

0.1 B₁ (Gauss) integral

double-

gral

업 200

300

## **CONCLUSION AND OUTLOOK**

#### Improved sensitivity of defect counting by rsEPR in a Bruker setup

• rsEPR implemented on Bruker E580 pulse spectrometer without hardware changes • S/N enhancement for a-Si:H dangling bond by a factor of up to 90 • Use rsEPR intensity for defect counting by comparison with reference sample

• Limitations: sample size (modulation field inhomogeneity), scan rate (max. 40 G, 100 kHz)

#### **Outlook on further developments**

• rsEPR at low temperature (increase of relaxation times) • rsEPR at 263 GHz (longer relaxation times favor rs over cwEPR) • Frequency-swept rsEPR, possibly at 263 GHz without a resonator



## ACKNOWLEDGEMENT

Samples were provided by FZ Jülich and PVcomB (HZB). We thank Mark Tseitlin for support with post-processing of rapid scan signals. Financial support of the BMBF (EPR-Solar network project, Grant No. 03SF0328) and the DFG SPP 1601 is gratefully acknowledged.

| DFG<br>SPP 1601           | Deutsche<br>Forschungsgemeinschaft |  | Bundesministerium<br>für Bildung<br>und Forschung |
|---------------------------|------------------------------------|--|---------------------------------------------------|
| Network project EPR-Solar |                                    |  |                                                   |