PVcomB produziert erste Schichten

 Die erste am PVcomB produzierte Silizium-Schicht<br> auf 30x30 cm2 Glas

Die erste am PVcomB produzierte Silizium-Schicht
auf 30x30 cm2 Glas

Erfolgreiche erste Beschichtung: die Glasplatte verlässt <br>das Cluster-Tool

Erfolgreiche erste Beschichtung: die Glasplatte verlässt
das Cluster-Tool

Herzstück der neuen Silizium-Forschungslinie: <br>das Clustertool der Firma Applied Materials

Herzstück der neuen Silizium-Forschungslinie:
das Clustertool der Firma Applied Materials

Ein neuer Abschnitt in der Geschichte des PVcomB hat begonnen: Am 15.11. erfolgte die erste eigene Beschichtung von 30 x 30 cm2 Glasmodulen mit amorphem Silizium. Die Deposition erfolgte an einer PECVD-Clusteranlage der Firma Applied Materials, Herzstück der Forschungslinie für Dünnschicht-Silizium, die am PVcomB aufgebaut wird.

 PECVD steht für plasma enhanced chemical vapour deposition (plasmaunterstützte chemische Gasphasenabscheidung), momentan auch für industrielle Anwendungen die Technik der Wahl für diese Art von Solarzellen. In dem Cluster-Tool werden hauchdünne amorphe und mikrokristalline Siliziumschichten (a-Si/µc-Si) auf Trägermaterialien wie Glas aufgebracht. Diese Materialkombination weist im Vergleich zur „klassischen“, auf Wafern basierenden Silizium-Technologie viele Vorteile wie niedrigeren Material- und Energieverbrauch auf. Allerdings müssen für Photovoltaik-Modulen dieser Art höhere Wirkungsgrade erreicht werden. Die weitere Aufskalierung in die Massenproduktion ist für die Dünnschicht Silizium Technologie am besten verstanden und kontrolliert.

An der PVcomB Forschungslinie wird eine industrienahe Produktion von Photovoltaik-Modulen möglich, die mit einer Größe von 30 x 30 Quadratzentimetern eine Brücke zwischen den kleinen, manchmal nur wenigen Millimetern kleinen Laborzellen und den großen, oftmals mehrere Quadratmeter messenden Industriemodulen bilden. „Mit diesem Cluster-Tool arbeiten wir am PVcomB unter ähnlichen Bedingungen wie die Industrie. So bilden wir eine direkte Brücke zwischen der Grundlagenforschung und Industrie und können die Unternehmen unterstützen, sowohl mit Forschungsergebnissen als auch mit praktisch ausgebildeten Wissenschaftlern.“ erläutert Dr. Rutger Schlatmann, Direktor des PVcomB.

EZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
  • Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Nachricht
    29.07.2024
    Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Der Plan klingt bestechend: Neuartige Elektrolyseure sollen aus ungereinigtem Meerwasser mit Strom aus Sonne oder Wind direkt Wasserstoff erzeugen. Doch bei näherer Betrachtung zeigt sich, dass solche DSE-Elektrolyseure (DSE = Direct Seawater Electrolyzers) noch Jahre anspruchsvoller Forschung erfordern. Dabei sind neuartige Elektrolyseure gar nicht nötig, um Meerwasser für die Produktion von Wasserstoff zu verwenden – eine Entsalzung reicht aus, um Meerwasser für konventionelle Elektrolyseure aufzubereiten. In einem Kommentar im Fachjournal Joule vergleichen internationale Expert*innen Kosten und Nutzen der unterschiedlichen Ansätze und kommen zu einer klaren Empfehlung.

     

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.