Schnellster Film der Welt aufgenommen

Das abgebildete Brandenburger Tor ist nur wenige Mikrometer groß.<br />Mit nur 50 Femtosekunden Zeitabstand haben die Wissenschaftler<br />die grüne und rote Abbildung des Objekts aufgenommen.<br />

Das abgebildete Brandenburger Tor ist nur wenige Mikrometer groß.
Mit nur 50 Femtosekunden Zeitabstand haben die Wissenschaftler
die grüne und rote Abbildung des Objekts aufgenommen.
© HZB

der zentrale Teil des aufgenommenen Hologramms<br />des Brandenburger Tor-Modells

der zentrale Teil des aufgenommenen Hologramms
des Brandenburger Tor-Modells © HZB/Eisebitt

Wissenschaftler entwickeln eine Methode, um Nanostrukturen zu filmen

Wenn wir erkältet sind, wehrt sich das Immunsystem. Das ist in der Biologie bekannt, aber schwer direkt zu beobachten. Denn Vorgänge auf molekularer Ebene sind nicht nur winzig, sondern vor allem extrem schnell und deswegen schwierig abzubilden. Wissenschaftler des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) und der Technischen Universität Berlin (TUB) stellen nun in der Zeitschrift Nature Photonics eine Methode vor, die ein wichtiger Schritt zum „molekularen Film“ ist. Sie können Bilder in einem so kurzen Zeitabstand aufnehmen, dass man Moleküle und Nanostrukturen zukünftig in Echtzeit beobachten kann.

Ein „molekularer Film“, der zeigt, wie sich ein Molekül im wichtigsten Moment einer chemischen Reaktion verhält, würde helfen fundamentale Vorgänge der Naturwissenschaften besser zu verstehen. Solche Prozesse sind oft nur einige Femtosekunden lang. Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde.

In diesem Zeitfenster kann man mit einem ultra-kurzen Lichtblitz zwar ein Bild aufnehmen – aber nicht mehrere. Die Bilder würden sich auf dem Detektor, der das Bild wiedergibt, überlagern und „verwaschen“. Den Detektor alternativ zwischen zwei Bildern auszuwechseln, würde selbst mit Lichtgeschwindigkeit zu lange dauern.
Trotzdem ist es der gemeinsamen Forschergruppe „Funktionale Nanomaterialien“ des HZB und der Technischen Universität Berlin am FEL des DESY Hamburg gelungen, mit Röntgenlicht solche ultraschnellen Bildsequenzen von Mikrometer kleinen Objekten aufzunehmen. Gemeinsam mit Kollegen der Universität Münster publizieren sie dies in der Zeitschrift Nature Photonics (DOI: 10.1038/NPHOTON.2010.287).

Die Forscher hatten eine raffinierte Idee, wie sie die überlagerten Bilder entschlüsseln können: Als Detektor dient ein Röntgen-Hologramm. Es erlaubt, zwei Abbildungen gleichzeitig aufzunehmen. Für die finale Bildsequenz sind mehrere Schritte nötig: Zunächst zerteilen die Wissenschaftler einzelne Strahlenbündel eines Röntgenlaserstrahls in zwei separate Lichtblitze. Einem Lichtblitz zwingen sie einen kleinen Umweg auf, wodurch beide minimal zeitversetzt auf das abzubildende Objekt treffen.

Es entstehen zwei Hologramme. Aus diesen kann man beide Bilder mit Hilfe einer mathematischen Funktion rekonstruieren. Dabei ist die Position der rekonstruierten Bilder zum abgebildeten Objekt verschieden und hängt davon ab, von welchem Lichtblitz sie erzeugt wurden. Die Forscher ordnen die Bilder einfach den jeweiligen Lichtblitzen zu und erhalten so die zeitlich richtige Abfolge der Bildsequenz.

Mit ihrer Methode nahmen die Berliner Wissenschaftler zwei Bilder eines Brandenburger Tor-Modells im Mikroformat mit nur 50 Femtosekunden Abstand auf. „In diesem kurzen Zeitintervall kommt selbst ein Lichtstrahl nur um die Breite eines Haares voran“, sagt Christian Günther, der als Doktorand das Projekt vorangetrieben hat. Dabei erlaubt die kurzwellige Röntgenstrahlung die Abbildung kleinster Strukturen. Denn je kürzer die Wellenlänge des Lichts ist, desto kleinere Objekte können abgebildet werden.

 „Das langfristige Ziel ist, die Bewegung von Molekülen und Nanostrukturen in Echtzeit verfolgen zu können“, sagt Projektleiter Prof. Dr. Stefan Eisebitt. Die extrem hohe Zeitauflösung gepaart mit der Möglichkeit, kleinste Objekte zu sehen, war die Motivation für die Entwicklung des Verfahrens. Denn ein Bild sagt zwar mehr als tausend Worte, ein Film aber ist aus mehreren Bildern zusammen gesetzt und kann zusätzlich etwas über die Dynamik eines Objektes aussagen.

FR


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.

  • Fokussierte Ionenstrahlen: Ein Werkzeug für viele Zwecke
    Science Highlight
    11.01.2024
    Fokussierte Ionenstrahlen: Ein Werkzeug für viele Zwecke
    Materialien auf der Nanoskala bearbeiten, Prototypen für die Mikroelektronik fertigen oder biologische Proben analysieren: Die Bandbreite für den Einsatz von fein fokussierten Ionenstrahlen ist riesig. Einen Überblick über die vielfältigen Möglichkeiten und eine Roadmap für die Zukunft haben Expert*innen aus der EU-Kooperation FIT4NANO nun gemeinsam erarbeitet. Der Beitrag ist in Applied Physics Review publiziert und richtet sich an Studierende, Anwender*innen aus Industrie und Wissenschaft sowie die Forschungspolitik.