Nutzerexperiment bei BESSY-II: Ein schneller Schalter für Magnetnadeln

Ein Datenpunkt &auml;ndert die Polarisierung:<br /> Der Probenausschnitt zeigt die Magnetisierung,<br /> w&auml;hrend sie sich von oben nach unten umkehrt.

Ein Datenpunkt ändert die Polarisierung:
Der Probenausschnitt zeigt die Magnetisierung,
während sie sich von oben nach unten umkehrt.

Wissenschaftler aus aller Welt kommen ans HZB, um die beiden Großgeräte – die Synchrotronstrahlungsquelle in Adlershof und den Forschungsreaktor in Wannsee – für ihre Untersuchungen zu nutzen. Doch bevor es mit den Messungen losgehen kann, müssen die Forscher Anträge einreichen, die ein international besetztes Gremium begutachtet. Dieser Aufwand wird betrieben, um für die aussichtsreichsten wissenschaftlichen Ideen Messzeit zur Verfügung zu stellen. Nicht selten führen sie zu herausragenden Publikationen. Ein aktuelles Beispiel ist ein Nutzerexperiment, das am Speicherring BESSY II von dem Team von Dr. Hermann Stoll vom Max-Planck-Institut für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung) zusammen mit Kollegen aus Gent und Regensburg durchgeführt wurde.

Die Abteilung von Frau Professor Schütz, MPI für Intelligente Systeme, Stuttgart, hat in enger Zusammenarbeit mit den HZB-Kollegen kürzlich ein neuartiges Rasterröntgenmikroskop in Betrieb genommen, das MAXYMUS am BESSY II. Im Rahmen der Doktorarbeit von Matthias Kammerer wurden dort magnetische Vortex-Kerne untersucht, die sich als besonders stabile Speicherpunkte für Datenbits eignen. Es gelang, einen neuen Mechanismus zu finden, wie sich diese Vortex-Kerne deutlich schneller schalten lassen – das ist eine wichtige Voraussetzung, um eine schnellere Datenspeicherung zu ermöglichen. Diese Entdeckung wurde nun veröffentlicht in:  M. Kammerer et al., Magnetic vortex core reversal by excitation of spin waves, Nat. Commun. 2:279 doi: 10.1038/ncomms1277 (2011). 


Hier finden Sie die Pressemitteilung zur Publikation.

Hier können Sie die Originalpublikation einsehen.

S. Zerbe

Das könnte Sie auch interessieren

  • Dynamik in 1D-Spinketten neu aufgeklärt
    Science Highlight
    03.10.2022
    Dynamik in 1D-Spinketten neu aufgeklärt
    Die Neutronenstreuung gilt als die Methode der Wahl, um magnetische Strukturen und Anregungen in Quantenmaterialien zu untersuchen. Nun hat die Auswertung von Messdaten aus den 2000er Jahren mit neuen Methoden erstmals wesentlich tiefere Einblicke in ein Modellsystem - die 1D-Heisenberg-Spinketten - geliefert. Damit steht ein neuer Werkzeugkasten für die Erforschung zukünftiger Quantenmaterialien zur Verfügung.

  • BESSY II: Lokalisierung von d-Elektronen vermessen
    Science Highlight
    02.10.2022
    BESSY II: Lokalisierung von d-Elektronen vermessen
    Übergangsmetalle besitzen vielfältige Anwendungen als Werkstoffe und in der Elektrochemie und Katalyse. Um ihre Eigenschaften zu verstehen, ist das Wechselspiel zwischen atomarer Lokalisierung und Delokalisierung der äußeren Elektronen in den d-Orbitalen entscheidend. Diesen Einblick ermöglicht nun eine besondere Messmethode an BESSY II mit höchster Präzision. Eine Studie an Kupfer, Nickel und Kobalt kommt dabei zu quantitativen Erkenntnissen. Die Royal Society of Chemistry hat den Beitrag als HOT Article 2022 ausgewählt.
  • Rhomboedrischer Graphit als Modell für Quantenmagnetismus
    Science Highlight
    27.09.2022
    Rhomboedrischer Graphit als Modell für Quantenmagnetismus
    Graphen ist ein äußerst spannendes Material. Nun zeigt eine Graphen-Variante ein weiteres Talent: Rhomboedrischer Graphit aus mehreren, leicht gegeneinander versetzten Schichten könnte die verborgene Physik in Quantenmagneten aufklären.