Synchrotronlicht in bisher unerreichter Qualität: „Wichtiger Schritt auf dem Weg zu einem stabilen Freie Elektronen Laser“

Dr. Johannes Bahrdt

Dr. Johannes Bahrdt

 

Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben in Kooperation mit der schwedischen Universität Lund Synchrotronlicht von bisher unerreichter Qualität erzeugt: Weltweit erstmalig gelang es ihnen, kohärente Lichtpulse im extremen vakuum-ultravioletten Spektralbereich zu generieren (66nm), die nur 200 Femtosekunden lang sind und die eine variable Polarisation aufweisen. „Wir haben damit einen wichtigen Schritt auf dem Weg zu einem stabilen Freie Elektronen Laser vollzogen“, sagt Dr. Johannes Bahrdt, Leiter der HZB-Abteilung „Undulatoren“.

Das von Johannes Bahrdt und seinen Kollegen realisierte Prinzip: Die wünschenswerten Eigenschaften eines kommerziellen Lasers langer Wellenlänge – des sogenannten Seed-Lasers – werden auf einen Lichtpuls im vakuum-ultravioletten Spektralbereich übertragen, wo es Lichtquellen mit gleichen Eigenschaften nicht gibt. Dafür wird der Elektronenstrahl des Injektor-Beschleunigers an der Synchrotronstrahlungsquelle MAX-lab in Lund, Schweden, in einer speziellen Magnetstruktur, dem Modulator, mit dem Seed-Laser überlagert. Seed-Laser und Elektronenstrahl treten im Modulator in Wechselwirkung, wodurch die Elektronenpakete verändert werden. Sie erfahren eine räumlich periodische Energiemodulation auf der Skala der Wellenlänge des Seed-Lasers. Anschließend durchfliegen die Pakete eine Schikane, eine dispersive Strecke, in der die Energiemodulation in eine Dichte-Modulation umgewandelt wird.

Die Elektronenpakete weisen danach in ihrem Inneren eine Mikrostruktur auf und werden in die nächste Magnetstruktur geschickt. Dieser so genannte Radiator nutzt die mikrostrukturierten Elektronenpakete und emittiert kohärentes Licht auf der Wellenlänge oder auf einer höheren Harmonischen der Mikrostrukturierung. Eine neue Klasse von Freien Elektronen Lasern (FELs), die sogenannten HGHG-FELs (z.B. der im Bau befindliche FEL FERMI in Trieste, Italien), beruhen auf diesem Prinzip und gelten wegen ihrer guten Strahleigenschaften als FELs der nächsten Generation. „Unser Radiator bietet durch seine spezielle Magnetstruktur die Möglichkeit, den Polarisationszustand des Lichtes frei zu definieren. Damit lässt sich sowohl linear polarisiertes Licht unterschiedlicher Orientierung als auch zirkular polarisiertes Licht mit frei wählbarem Drehsinn einstellen“, erklärt Johannes Bahrdt: „Uns ist es erstmals gelungen, mit dieser Methode an einem Linearbeschleuniger (Linac) zirkulare Strahlung zu erzeugen.“ Dies ist ein wichtiger Schritt bei der Weiterentwicklung von Linac-basierten Freie-Elektronen-Lasern, die bisher nur linear polarisiertes Licht produzieren.

Das Experiment wurde im Rahmen des EuroFEL Design Project aufgebaut und wird in einer Kollaboration von HZB und MAX-lab betrieben. Ziel ist es, FELs hinsichtlich Zeitverhalten, Kohärenz, Polarisation und spektraler Reinheit zu optimieren sowie die dafür notwendige Einzel-Puls-Diagnostik zu entwickeln. Die Undulatorabteilung des HZB hat dafür das komplette Undulatorsystem entwickelt und installiert sowie Glasfasersysteme zur Elektronenstrahldiagnostik bereitgestellt. Das Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung hat eine Terahertz-Detektion zur Optimierung der Bunchkompression beigesteuert. Wissenschaftler aus beiden HZB-Einheiten waren in den letzten Jahren während der Inbetriebnahmezeiten der Anlage in Schweden.

HS


You might also be interested in

  • Sebastian Keckert wins Young Scientist Award for Accelerator Physics
    News
    21.03.2024
    Sebastian Keckert wins Young Scientist Award for Accelerator Physics
    Dr Sebastian Keckert has been awarded the Young Scientist Award for Accelerator Physics of the German Physical Society (DPG). The prize is endowed with 5000 euros and was presented to him on 21.03. during the spring conference in Berlin. It honours the physicist's outstanding achievements in the development of new superconducting thin-film material systems for cavities.

  • Fertilisation under the X-ray beam
    Science Highlight
    19.03.2024
    Fertilisation under the X-ray beam
    After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF. 
  • The future of BESSY
    News
    07.03.2024
    The future of BESSY
    At the end of February 2024, a team at HZB published an article in Synchrotron Radiation News (SRN). They describe the next development goals for the light source as well as the BESSY II+ upgrade programme and the successor source BESSY III.