Flüchtiges fassen

 HZB-Wissenschaftler Florin Radu inspiziert eine BaTiO3-Probe<br />im ALICE-Diffraktometer

HZB-Wissenschaftler Florin Radu inspiziert eine BaTiO3-Probe
im ALICE-Diffraktometer

HZB-Wissenschaftler entdecken, wie eine Substanz bei Raumtemperatur ungewöhnliche Eigenschaften entwickelt. Sie wird „multiferroisch“ und damit geeignet für eine schnelle Datenspeicherung.

Wissenschaftler des Helmholtz-Zentrums Berlin (HZB) haben in Kooperation mit Kollegen aus Frankreich und Großbritannien ein Material entwickelt, das bei Raumtemperatur eine seltene und schwer fassbare Eigenschaft zeigt: Es ist multiferroisch – zeigt also sowohl ferroelektrische als auch ferromagnetische Eigenschaften. So kann es bei Anlegen eines äußeren elektrischen Feldes spontan seine Polarisation ändern (ferroelektrische Eigenschaft) und sich in einem Magnetfeld magnetisieren (Ferromagnetismus).

Objekt der Untersuchungen war Bariumtitanat (BaTiO3), ein ferroelektrisches Kristall. Bariumtitanat gilt als vielsprechender und kostengünstiger Rohstoff für zahlreiche Anwendungen in der Datenspeicherung. Ihre Erkenntnisse veröffentlichen die Wissenschaftler jetzt in Nature Materials unter dem Titel „Interface-induced room-temperature multiferroicity in BaTiO3”.

„Wir konnten zeigen, dass multiferroische Eigenschaften bei Raumtemperatur möglich sind”, sagt HZB-Forscher Sergio Valencia. Dieses Phänomen sei bei Raumtemperatur extrem selten: „Bariumtitanat ist ferromagnetisch“, erläutert Valencia: „Das heißt, seine magnetischen Eigenschaften lassen sich über ein elektrisches Feld beeinflussen. Wenn man von außen eine Spannung anlegt und dadurch die ferroelektrische Polarisation eines Bariumtitanat-Films umkehrt, beeinflusst dies auch seine Magnetisierung.“

Anwendbar sei dieses Phänomen bei der Datenspeicherung, so der Forscher: „Bariumtitanat als Datenträger kann durch Anlegen eines elektrischen Feldes beschrieben werden.“ Das sei viel günstiger als der traditionelle Einsatz von magnetischen Feldern, so Valencia.
 
Die Möglichkeit, dass man die magnetischen Eigenschaften des Materials über seine ferroelektrische Komponente bei Raumtemperatur beeinflussen kann, macht Bariumtitanat als mögliches Material für Speichermedien höchst interessant: Andere multiferroische Substanzen sind extrem schwierig zu handhaben. Damit sich die Eigenschaften zeigen, benötigt man zum Beispiel sehr niedrige Temperaturen.

Das Zusammenspiel von Ferromagnetismus und Ferroelektrizität zu entschlüsseln, ist deshalb so schwierig, weil beide Phänomene eine Art „Hassliebe“ verbindet. Ferromagnetismus benötigt andere Umweltbedingungen als Ferroelektrizität. In der Natur treten sie deshalb selten zusammen in einer Substanz auf. Geschieht dies doch, stehen sie in enger Beziehung zueinander und beeinflussen sich gegenseitig. „Weil dies meist nur in extremer Kälte zu beobachten ist, sind die meisten Multiferroika für praktische Anwendungen kaum nutzbar“, sagt Sergio Valencia: „Wenn der multiferroische Effekt erst bei minus 270 Grad Celsius auftritt, kann man das Material nur mit extrem hohen Kosten in ein Gerät einbauen, das bei Raumtemperatur funktionieren muss.“

Ihre Beobachtung des multiferroischen Verhaltens dünner Bariumtitanat-Filme bei Raumtemperatur machten die Wissenschaftler am Berliner Elektronenspeicherring BESSY II des HZB.

Mit der Methode des „Soft X-Ray Resonant Magnetic Scattering“ studierten sie das magnetische Moment von Titanium (Ti)- und Sauerstoff (O)-Atomen in Bariumtitanat. Da Bariumtitanat bei Raumtemperatur eigentlich ein nicht-magnetisches Ferroelektrikum ist, induzierten sie den Ferromagnetismus durch die Nähe natürlicher Ferromagneten wie Eisen und Kobalt: Dazu brachten sie einen nur zehn Atome dünnen Film aus Eisen und Kobalt auf einen Bariumtitanat-Film auf, der nur aus vier Atomlagen besteht. „Diese dünnen Schichten braucht man auch später bei technischen Anwendungen,“ erklärt Valencia: „Sonst werden die Geräte viel zu groß.”

Eric Verbeten


Das könnte Sie auch interessieren

  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Spintronik: Röntgenmikroskopie an BESSY II kann Domänenwände unterscheiden
    Science Highlight
    28.08.2023
    Spintronik: Röntgenmikroskopie an BESSY II kann Domänenwände unterscheiden
    Magnetische Skyrmionen sind winzige Wirbel aus magnetischen Spin-Texturen. Im Prinzip könnten Materialien mit Skyrmionen als spintronische Bauelemente verwendet werden, zum Beispiel als sehr schnelle und energieeffiziente Datenspeicher. Doch im Moment ist es noch schwierig, Skyrmionen bei Raumtemperatur zu kontrollieren und zu manipulieren. Eine neue Studie an BESSY II analysiert nun die Bildung von Skyrmionen in einem besonders interessanten Material in Echtzeit und mit hoher räumlicher Auflösung: Es handelt sich um ferrimagnetische Dünnschichten aus Dysprosium und Kobalt. Die Ergebnisse zeigen, dass es möglich ist, den Skyrmionentyp klar zu bestimmen.
  • Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten
    Science Highlight
    02.06.2023
    Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten
    Magnetische Domänenwände sorgen für elektrischen Widerstand, da es für Elektronenspins schwierig ist, ihrer magnetischen Struktur zu folgen. Dieses Phänomen könnte in spintronischen Bauelementen genutzt werden, bei denen der elektrische Widerstand je nach Vorhandensein oder Fehlen einer Domänenwand variieren kann. Eine besonders interessante Materialklasse sind Halbmetalle wie La2/3Sr1/3MnO3 (LSMO). Sie weisen vollständige Spinpolarisation auf. Allerdings war der Widerstand einer einzelnen Domänenwand in Halbmetallen bisher noch nicht bestimmt worden. Nun hat ein Team aus Spanien, Frankreich und Deutschland eine einzelne Domänenwand auf einem LSMO-Nanodraht erzeugt und Widerstandsänderungen gemessen, die 20mal größer sind als bei normalen Ferromagneten wie Kobalt.