Keywords: BESSY II (263)

News    19.09.2011

Oxygen: Bond breaking in a jumpy way

Dr. Justine Schlappa

HZB is involved in researching quantum beating, which expands our knowledge on the creation and destruction of chemical bonds.

Breaking the bond between two atoms is an elementary step in a chemical reaction. The atoms separate until they feel no more interaction. It turns, if one of the atoms comes close enough to another atom, then it can be captured by it, resulting in a new chemical bond. The quasi-classical prevailing notion of this process is that the atoms continuously move apart: When a bond breaks, the atoms can be found at any distance alike.

An international team of scientists, with the involvement of Professor Dr. Alexander Föhlisch and Dr. Justine Schlappa of the Institute ‘Methods and Instrumentation for Synchrotron Radiation Research’ at Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) has shown that this notion has to be revised: When oxygen molecules break apart, for example, the atoms are not found at all distances, but only at few selected ones.

The scientists made this discovery when they illuminated gaseous oxygen with synchrotron light. This light led to an excitation of the oxygen molecules, where the chemical bond between the two oxygen atoms in the molecule were temporarily broken. The researchers measured the light scattered back from the molecules and gained information about the distance of the oxygen atoms at specific times. The scientists chose the energy of the incident light such that the dissociation process could take place in two ways. The only distinction between these two ways was that the separating atoms were moving at different speeds.

The results of their measurements showed that the distances at which oxygen atoms were detectable had preferential values: In other words, there are distances during bond breaking at which the oxygen atoms prefer to remain, and other places where they were not found. To explain this phenomenon, HZB scientist Dr. Justine Schlappa draws an analogy with a slightly out-of-tune guitar: “If a musician plucks two notes on the strings at slightly shifted frequencies to each other, then he hears the sound go periodically louder and quieter. Acousticians call this rise and fall in volume “beating”. It disappears when the instrument is perfectly tuned and the frequencies of the tones are perfectly harmonized.”

The cause for this beating is the inherent wave characteristic of sound. “When the waves of two tones are slightly shifted relative to each other, this results in interference,” says Schlappa: “Wave crests that occur simultaneously reinforce each other and the sound becomes louder. If wave troughs encounter wave crests, however, then they cancel each other out – the sound becomes quieter.” Just as with sound, the physicists now regard the behaviours of separating oxygen atoms as waves. Justine Schlappa continues: “The two possible speeds at which the oxygen atoms can separate leads to the slightly shifted frequencies in the oxygen waves and cause the so-called quantum beating.” Again, wave crests reinforce one another and there are locations in space where atoms are preferentially found. Wave crests and wave troughs cancel each other out with the result that there are locations where no atoms reside.

“Our observation has profound consequences for our understanding of chemical reactions,” says Professor Dr. Alexander Föhlisch, head of the HZB institute ‘Methods and Instrumentation for Synchrotron Radiation Research’. “If no atom can be detected, then no other chemical steps can take place at that distance,” Föhlisch continues. “This is a serious limitation for the pathways of chemical reactions and forces us to rethink our idea of chemical processes from the ground up.”

A. Pietzsch et al., Spatial Quantum Beats in Vibrational Resonant Inelastic Soft X-ray Scattering at Dissociating States of Oxygen, Phas.; Rev. Lett. 153004 (2011). DOI: 10.1103/PhysRevLett.106.153004


Y-P Sun et al., Internal Symmetry and Selection Rules in Resonant Inelastic Soft X-ray Scattering", J. Phys. B: At. Mol. Opt. Phys. 44 161002 (2001).



You might also be interested in
  • <p>Water molecules are excited with X-ray light (blue). From the emitted light (purple) information on H-bonds can be obtained.</p>SCIENCE HIGHLIGHT      20.02.2019

    Water is more homogeneous than expected

    In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss Light Source show that this is not the case. At room temperature and normal pressure, the water molecules form a fluctuating network with an average of 1.74 ± 2.1% donor and acceptor hydrogen bridge bonds per molecule each, allowing tetrahedral coordination between close neighbours. [...]

  • <p>More than 250 invited guests celebrated the tenth anniversary of HZB on 18 February at the TIPI at the Chancellery.</p>NEWS      18.02.2019

    10 Years of Helmholtz-Zentrum Berlin: A strong partner in the scientific landscape

    Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) is celebrating its tenth anniversary on 18 February 2019 with around 250 invited guests from science, politics and industry. The Centre is one of the world's top institutions and makes a decisive contribution to Berlin as a location for cutting-edge research. This was emphasized by Michael Müller, Governing Mayor of Berlin, in reference to the anniversary. [...]

  • <p>The cones represents the magnetization of the nanoparticles. In the absence of electric field (strain-free state) the size and separation between particles leads to a random orientation of their magnetization, known as superparamagnetism</p>SCIENCE HIGHLIGHT      14.02.2019

    Spintronics by “straintronics”: Superferromagnetism with electric-field induced strain

    Data storage in today’s magnetic media is very energy consuming. Combination of novel materials and the coupling between their properties could reduce the energy needed to control magnetic memories thus contributing to a smaller carbon footprint of the IT sector. Now an international team led by HZB has observed at the HZB lightsource BESSY II a new phenomenon in iron nanograins: whereas normally the magnetic moments of the iron grains are disordered with respect each other at room temperature, this can be changed by applying an electric field: This field induces locally a strain on the system leading to the formation of a so-called superferromagnetic ordered state. [...]