The large-scale project EMIL (Energy Materials In-situ Laboratory Berlin) will create new opportunities for researching energy materials by the beginning of 2015

Helmholtz Zentrum Berlin and the Max Planck Society are going to build a new, dedicated X-ray beamline together at the synchrotron source BESSY II, which will be used for analysing materials for renewable energy generation. The new large-scale project has been dubbed EMIL (a common name in Berlin, but which also stands for Energy Materials In-situ Laboratory Berlin) and includes, among other things, the major project already announced under the name of SISSY (Solar Energy Materials In-Situ Spectroscopy at the Synchrotron). The assessment of EMIL in September 2011, by an external committee of experts engaged by the scientific advisory board, went very well and the experts endorsed the EMIL project "enthusiastically". The supervisory board of HZB will give the go-ahead for construction of EMIL in two months.

HZB project manager Dr. Klaus Lips is very satisfied with the results: "In the planned laboratory, we will combine material production with ultra-precise analysis of visible properties better than anywhere else in the world, without interruption of the vacuum needed for synthesis, which will allow us to develop better thin-film solar cells and energy stores."

EMIL will be a worldwide unique laboratory, built and operated at BESSY II, where materials for photovoltaics and photocatalytic processes can be studied by X-ray analysis. Three experimental stations will be built, where researchers will have soft and hard X-rays at their disposal (60 eV–10 keV).

The measuring station SISSY will be available for studying photovoltaic materials at EMIL. Another measuring station, CAT@EMIL, will be in the same laboratory for researching catalysts, and is being financed and built by the Max Planck Society. Both measuring stations are primarily intended for in-house research, while one third of the measurement time will be made available for external users from universities and industry.

The third measuring station planned in the EMIL project (60to6), which has received no funding as yet, would be primarily dedicated for external users. Since the beamline offers unique conditions for studying materials with its excellent beam characteristics, establishing 60to6@EMIL will make EMIL even more attractive to external researchers. Users shall have up to 80 percent of the measurement time available at 60to6.

Building EMIL, with its analytical tools SISSY and CAT, requires 18 million euros in funding. Following a positive vote from the supervisory board, HZB will invest 6 million euros in EMIL and the Max Planck Society will participate with a further 6.7 million euros.  The German Federal Ministry for Education and Research (BMBF) is funding construction of the SISSY station with 5.7 million euros from the "Photovoltaics" innovation alliance.

"We could not have imagined that EMIL would be realized together with the Max Planck Society, and the best analytical conditions created for researchers worldwide, had the two centres not merged in 2009. The new EMIL project makes the benefits of the merger especially clear," says Dr. Markus Sauerborn, head of the policy unit "Strategy and Programs".

Constructing EMIL will require extensive structural measures at BESSY II, and we will keep you up to date on these.

Update: The supervisory board has given his positive vote for realising the EMIL project in December 2011.

SZ


You might also be interested in

  • Quantsol Summer School 2024 - Call for Application
    News
    17.04.2024
    Quantsol Summer School 2024 - Call for Application
    Registration for Quantsol is now open!

    The International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) will be held in September 1-8, 2024 in Hirschegg, Kleinwalsertal, Austria. The school is organised by the Helmholtz-Zentrum Berlin and the Technical University of Ilmenau. Applications can be submitted through the school’s homepage until Friday 31st of May 2024, 23.59h CET.

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.