Dreidimensionale Charakterisierung von Katalysatornanopartikeln

Darstellung der Katalysator-Nanopartikel: Die Partikel (farbig)<br />haften an einem Tr&auml;germaterial (grau). Sie &nbsp;werden mit der<br />Elektronentomographie erfasst. F&uuml;r die Darstellung werden die<br />Daten mit neuen Verarbeitungsalgorithmen bearbeitet.<br />Foto: HZB

Darstellung der Katalysator-Nanopartikel: Die Partikel (farbig)
haften an einem Trägermaterial (grau). Sie  werden mit der
Elektronentomographie erfasst. Für die Darstellung werden die
Daten mit neuen Verarbeitungsalgorithmen bearbeitet.
Foto: HZB

Katalysatoren sind aus der modernen Technik nicht wegzudenken: Sie spielen eine große Rolle in chemischen Prozessen in der Industrie, bilden die Grundlage für schadstoffarme Autos und werden in Zukunft für die Energieerzeugung in Brennstoffzellen essenziell sein. In einer Zusammenarbeit des Helmholtz-Zentrum Berlin (HZB) mit der Bundesanstalt für Materialforschung und -prüfung (BAM) konnten Wissenschaftler erstmals Ruthenium-Katalysatorpartikel mit nur etwa zwei Nanometer Durchmesser mit Hilfe der Elektronen-Tomographie dreidimensional abbilden.

Unter Einsatz neuer Verarbeitungsalgorithmen gelang es den Wissenschaftlern anschließend, die chemisch aktive, freie Oberfläche der Partikel zu analysieren und zu bewerten. Diese detaillierte Untersuchung der Partikel ermöglicht Einblicke in das Wirken von Katalysatoren, die insbesondere in Brennstoffzellen-Fahrzeugen der Zukunft eine große Rolle spielen werden. Die Ergebnisse wurden im „Journal of the American Chemical Society“ (JACS) veröffentlicht.

Um das Wirken von Katalysator-Teilchen besser zu verstehen und diese entsprechend weiterzuentwickeln, ist es von großer Bedeutung, ihre dreidimensionale Form und Struktur zu kennen. Das Problem dabei ist, dass die Partikel meist nur um zwei Nanometer groß und damit zehntausendfach kleiner sind, als ein menschliches Haar dick ist. Dem HZB-Physiker Roman Grothausmann ist es im Rahmen seiner Doktorarbeit zusammen mit Kollegen vom HZB und der BAM gelungen, spezielle Katalysator-Nanopartikel dreidimensional zu analysieren, die für den Einsatz in Polymerelektrolyt (PEM)-Brennstoffzellen in Autos und Bussen am HZB entwickelt wurden. Die Wissenschaftler setzten dafür eine spezielle Technik ein – die Elektronentomographie. Diese Technik funktioniert ähnlich wie die aus der Medizin bekannte Computertomographie (CT) mit dem Unterschied, dass Nanopartikel, mit viel höherer Auflösung abgebildet werden. Dafür hat Grothausmann viele einzelne Elektronenmikroskopiebilder unter verschiedenen Blickwinkeln aufgenommen. Wissenschaftler von der BAM haben anschließend mit einem neuartigen mathematischen Rekonstruktionsalgorithmus 3D-Bilder mit hoher Detailschärfe berechnet.

Die Katalyse in Brennstoffzellen findet an der Oberfläche des Katalysatormaterials statt. Da Katalysatormaterialien wie beispielsweise Platin oft sehr teuer sind, versucht man mit kleinen Partikeln möglichst viel Oberfläche zu erhalten. Nanopartikel haben eine besonders große Oberfläche im Verhältnis zu ihrem Volumen. Auf atomarer Ebene sind allerdings nicht alle Bereiche der Partikeloberfläche gleich: Manche Oberflächenbereiche ermöglichen aufgrund ihrer spezifischen Eigenschaften eine höhere Umsatzrate von chemischer zu elektrischer Energie als andere. Zudem steht nicht die gesamte Oberfläche der Nanopartikel der Katalyse zur Verfügung, da die Partikel eines heterogenen Katalysators nicht einfach im Raum schweben, sondern auf einem Träger ruhen. Die zur Reaktion benötigten Stoffe können nur die frei liegende Oberfläche erreichen. Zusätzlich ist aber auch eine elektrisch leitende Verbindung zu den Nanopartikeln nötig, um den Stromkreis der Brennstoff-Zelle zu schließen. Grothausmann und Kollegen konnten sowohl die frei liegende als auch die bedeckte Oberfläche von einigen tausend Nanopartikeln vermessen. Zusätzlich zur Größenverteilung der Nanopartikel wurden auch deren Formtendenzen bestimmt. Viele der Nanopartikel weichen von einer idealisierten Kugelform ab, was zusätzlich das Verhältnis von Oberfläche zu Volumen erhöht. Abschließend wurde die Ausrichtung der Nanopartikel zur lokalen Oberfläche des Trägers ausgewertet. Dies ermöglicht statistische Aussagen darüber, wie häufig raue und besonders reaktive Flächenbereiche der Nanopartikel frei liegen.

Die Elektronentomographie ist eine Methode, die eine direkte Abbildung der 3D-Strukturen ermöglicht und so auch als Referenz dient, um die mit anderen Verfahren gewonnenen Messresultate besser zu verstehen. Der hier untersuchte Katalysator dient zur Beschleunigung der Elektroreduktion von Sauerstoff zu Wasser in PEM-Brennstoffzellen. Anstelle des üblicherweise eingesetzten und sehr teuren Platins wurde hier ein kostengünstigeres Material, und zwar „Ruthenium“, verwendet. Diese Promotionsarbeit trägt dazu bei, diese neuartigen Materialien besser zu verstehen und in Zukunft für die Anwendung in Brennstoffzellen weiter zu optimieren. 

Publikation: R. Grothausmann, G. Zehl, I. Manke, S. Fiechter, P. Bogdanoff, I. Dorbandt, A. Kupsch, A. Lange, M. Hentschel, G. Schumacher, J. Banhart

Quantitative Structural Assessment of Heterogeneous Catalysts by Electron Tomography

Journal of the American Chemical Society, DOI: 10.1021/ja2032508 (2011)

HS


Das könnte Sie auch interessieren

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.
  • Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Science Highlight
    03.04.2024
    Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Die Wechselwirkungen zwischen Phosporsäure und dem Platin-Katalysator in Hochtemperatur-PEM-Brennstoffzellen sind komplexer als bisher angenommen. Röntgen-Experimente an BESSY II in einem mittleren Energiebereich (tender x-rays) haben die vielfältigen Oxidationsprozesse an der Platin-Elektrolyt-Grenzfläche entschlüsselt. Die Ergebnisse zeigen auch, dass die Feuchtigkeit in der Brennstoffzelle diese Prozesse beeinflusst, so dass sich hier Möglichkeiten bieten, um Lebensdauer und Wirkungsgrad von Brennstoffzellen zu erhöhen.