Themen: Forschungsreaktor (92) Beschleunigerphysik (176) BESSY II (272)

Nachricht    05.06.2012

HZB an Helmholtz-Plattform für Detektortechnologien und Detektorsysteme beteiligt

Die Helmholtz-Gemeinschaft initiiert eine Plattform, um Detektortechnologien und Detektorsysteme weiter zu entwickeln. Ziel der Plattform –  die als Portfoliothema gefördert wird – ist es, Technologien zum Aufbau neuartiger Detektoren für Photonen, Neutronen sowie geladene Teilchen weiter zu entwickeln, die Datenübertragung und -auswertung zu optimieren und exemplarische Detektorprototypen zu entwerfen und zu bauen. Ein weiteres wichtiges Ziel ist die Vernetzung der Detektorlabore. Kleine Zentren können so an kostspieligen technologischen Entwicklungen teilhaben. Das HZB ist an der Plattform beteiligt und entwickelt Systeme für die Detektion von Neutronen, Photonen sowie intelligente, programmierbare Hardware für die Datenerfassung.

„Ein wichtiges Thema in der Neutronenforschung ist der Ersatz von Helium-3 in den Detektoren“, sagt der Koordinator der Neutronendetektorentwicklung in der Plattform, Dr. Thomas Wilpert. Helium-3 ist ein Nebenprodukt bei der Gewinnung von Tritium für militärische Zwecke. Auf Grund internationaler Abrüstung ist die Tritium-Produktion seit den 1990er Jahren deutlich zurückgegangen. Parallel dazu ist der Bedarf weltweit für verschiedene Anwendungen drastisch gestiegen, so dass ein Mangel an Helium-3 für Forschungszwecke deutlich spürbar ist.

Das HZB arbeitet deshalb gemeinsam mit Kooperationspartnern an der Entwicklung von Detektoren, die Bortrifluorid anstelle Helium-3 einsetzen. Dies ist eine wichtige Voraussetzung für ein erfolgreiches Upgrade des HZB-Flugzeitspektrometers NEAT. Für die Weiterentwicklung so genannter schneller Photonendetektoren wird zudem ein Messplatz am Elektronenspeicherring BESSY II des HZB eingerichtet.

HS


           



Das könnte Sie auch interessieren
  • <p>Ein R&ouml;ntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden.</p>SCIENCE HIGHLIGHT      09.07.2019

    Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert

    In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild. [...]


  • <p>Nach Anregung durch Synchrotronstrahlung (gr&uuml;n) emittiert Nickel R&ouml;ntgenlicht (gelb). Die Anzahl der emittierten Photonen nimmt jedoch ab, wenn sich die Temperatur von Raumtemperatur (links) auf 900 &deg;C erh&ouml;ht (rechts).</p>SCIENCE HIGHLIGHT      28.06.2019

    Ultraschneller Magnetismus: Elektron-Phonon-Wechselwirkungen an BESSY II analysiert

    Wie schnell kann ein Magnet seine Ausrichtung ändern und was sind die mikroskopischen Mechanismen? Diese Fragen sind für die Entwicklung von Datenspeichern und Computerchips von größter Bedeutung. Jetzt ist es einem HZB-Team am BESSY II erstmals gelungen, den wichtigsten mikroskopischen Prozess des ultraschnellen Magnetismus experimentell zu beobachten. Die zu diesem Zweck entwickelte Methodik kann auch zur Untersuchung von Wechselwirkungen zwischen Spins und Gitterschwingungen in Graphen, Supraleitern oder anderen (Quanten-)Materialien verwendet werden. [...]




Newsletter