Preis und Preis gesellt sich gern: Simon Kirner und Christiane Stephan mit Posterpreisen auf der E-MRS ausgezeichnet

Die Postersessions waren ein wichtiger Bestandteil <br />der Symposien auf dem E-MRS Spring Meeting 2012<br />

Die Postersessions waren ein wichtiger Bestandteil
der Symposien auf dem E-MRS Spring Meeting 2012
© EMRS

Auf der renommierten Frühjahrskonferenz der Europäischen Materialforschungsgesellschaft (E-MRS) wurden im Mai gleich zwei HZB-Nachwuchswissenschaftler für ihre Posterbeiträge ausgezeichnet. Beide Forscher beschäftigten sich mit verschiedenen Aspekten von Dünnschichtsolarzellen. Simon Kirner, Doktorand am PVcomB, zeigte in seinem Poster, wie man Tandemsolarzellen aus amorphen und kristallen Silizium mithilfe einer Zwischenschicht aus Silizium-Oxid optimieren kann. Dr. Christiane Stephan aus der Abteilung Kristallographie untersuchte Defekte in der Kristallstruktur von Cu(In,Ga)Se2, dem Absorbermaterial in hocheffizienten Chalkopyrit-Dünnschichtsolarzellen. An dem E-MRS Spring Meeting in Straßburg, die mit großer Industriebeteiligung organisiert wurde, nahmen etwa 2500 Teilnehmer teil; für die wissenschaftlichen Diskussionen gab es 25 Symposien zu verschiedenen Themenbereichen.

Tandemsolarzellen aus Dünnschicht-Silizium optimieren
Tandemzellen bestehen aus zwei Solarzellen, die miteinander verbunden sind: aus der Top-Zelle und der Bottom-Zelle. Diese Zellen bestehen aus unterschiedlichen Materialien. Der bestechende Vorteil von diesen „gestapelten“ Solarzellen: jede Solarzelle kann verschiedene Lichtbereiche einfangen, so dass die Tandemzelle insgesamt mehr Licht in Strom umwandeln kann. Simon Kirner untersucht Tandemsolarzellen aus amorphem Silizium (Top-Zelle) und mikrokristallinem Silizium (Bottom-Zelle) Ein limitierender Faktor dieser Solarzellen ist, dass die Topzelle zu wenig Strom einfangen kann. Die Schichtdicke kann allerdings nicht beliebig erhöht werden, da dies eine erhöhte Alterung der Topzelle verursachen würde. Simon Kirner hat deshalb den Einsatz einer reflektierenden Zwischenschicht aus mikrokristallinem Siliziumoxid (Intermediate Reflector) untersucht, um diese Solarzellen zu optimieren. Die aus dem Einbau des Intermediate Reflector resultierenden schlechteren elektrischen Eigenschaften der Tandemzelle konnten durch den Einsatz einer Rekombinationsschicht aus mikrokristallinem Silizium vollständig kompensiert werden. Doch dieser Effekt ist bisher nur teilweise verstanden. Simon Kirner will nun herausfinden, woran das liegt.
 
Mit Neutronen und Röntgenlicht Defekte in Chalkopyrit-Dünnschichtsolarzellen entdecken
Christiane Stephan hat einen anderen Arbeitsschwerpunkt: Sie beschäftigt sich mit hocheffizienten Chalkopyrit-Dünnschichtsolarzellen mit CuInSe2, CuGaSe2 oder Cu(In,Ga)Se2 als Absorberschicht. Grundsätzlich zeichnen sich diese Verbindungshalbleiter durch eine nicht-stöchiometrische Zusammensetzung auf, das heißt sie sind Kupfer-arm und Indium-reich. Aufgrund dieser Stöchiometrieabweichungen entstehen in der Kristallstruktur Defekte (sog. Punktdefekte), die dann in der fertigen Solarzelle Ladungsträger einfangen und somit den Stromfluss verringern können. Andererseits bewirkt diese Stöchiometrieabweichung, dass die Kristallstruktur zunächst über einen gewissen Zusammensetzungsbereich stabil ist, bevor sich eine andere Phase (Verbindung) bildet. Um zu beobachten, wie sich die Kristallstruktur des Absorbermaterials in den Dünnschicht-Solarzellen mit der Zusammensetzung ändert, reichten Christiane Stephan optische und elektrische Analysemethoden allein nicht aus. Sie nutzte Neutronen und Synchrotronstrahlung, um die atomare Struktur der Verbindungshalbleiter zu analysieren. Durch die Methoden der Neutronenbeugung mit anschließender Rietveld-Verfeinerung in Kombination mit der anormalen Röntgenbeugung am Synchrotron konnte sie in Pulverproben mit einer definierten Zusammensetzung die Punktdefekte qualitativ und quantitativ bestimmen. Ein zentrales Ergebnis ist, dass sich die Verbindungen CuInSe2, CuGaSe2 und Cu(In,Ga)Se2 im kupferarmen Zusammensetzungsbereich bezüglich ihrer Punktdefekte deutlich unterscheiden. Mit dieser systematischen Untersuchung der Kristallstruktur auf atomarer Ebene können Forscher nun wichtige Rückschlüsse ziehen, um die bestehenden Defektmodelle weiter zu verfeinern.  
 

Sie können die Poster hier anschauen:

SZ

Das könnte Sie auch interessieren

  • Europäische Pilotlinie für innovative Tandem-Solarzellen
    Nachricht
    23.11.2022
    Europäische Pilotlinie für innovative Tandem-Solarzellen
    PEPPERONI ist ein vierjähriges Forschungs- und Innovationsprojekt, das im Rahmen von Horizon Europe kofinanziert und gemeinsam vom Helmholtz-Zentrum Berlin und Qcells koordiniert wird. Das Projekt wird dazu beitragen, die Markteinführung und Massenproduktion von Perowskit/Silizium-Tandem-Photovoltaik-Technologien voranzubringen.

  • Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Science Highlight
    17.11.2022
    Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Photoelektroden auf der Basis von BiVO4 gelten als Top-Kandidaten für die solare Wasserstofferzeugung. Doch was passiert eigentlich, wenn sie mit Wassermolekülen in Kontakt kommen? Eine Studie im Journal of the American Chemical Society hat diese entscheidende Frage nun teilweise beantwortet: Überschüssige Elektronen aus dotierten Fremdelementen oder Defekten fördern die Dissoziation von Wasser, was wiederum sogenannte Polaronen an der Oberfläche stabilisiert. Dies zeigen Daten aus Experimenten eines HZB-Teams an der Advanced Light Source des Lawrence Berkeley National Laboratory. Die Ergebnisse könnten dazu beitragen, bessere Photoanoden für die grüne Wasserstoffproduktion zu entwickeln.
  • Photokatalyse: Prozesse bei der Ladungstrennung experimentell erfasst
    Science Highlight
    08.11.2022
    Photokatalyse: Prozesse bei der Ladungstrennung experimentell erfasst
    Bestimmte Metalloxide gelten als gute Kandidaten für Photokatalysatoren, um mit Sonnenlicht grünen Wasserstoff zu produzieren. Ein chinesisches Team hat nun in Nature spannende Ergebnisse zu Kupfer(I)oxid-Partikeln veröffentlicht, zu denen eine am HZB entwickelte Methode erheblich beigetragen hat. Die transiente Oberflächen-Photospannungs-Spektroskopie zeigte, dass positive Ladungsträger an Oberflächen im Laufe von Mikrosekunden durch Defekte eingefangen werden. Die Ergebnisse geben Hinweise, um die Effizienz von Photokatalysatoren zu steigern.