Europäische Union fördert Dünnschicht-Solarzellen-Projekt mit mehr als zehn Millionen Euro

Zinkoxid-Nanostäbe sind hier auf eine CIGSe-Solarzelle<br />als Antireflexionsschicht abgeschieden<br />©HZB

Zinkoxid-Nanostäbe sind hier auf eine CIGSe-Solarzelle
als Antireflexionsschicht abgeschieden
©HZB

Am europäischen Konsortium sind das Helmholtz-Zentrum Berlin und die Freie Universität Berlin als Partner beteiligt

Die Europäische Union hat bis 2015 innerhalb des 7. Forschungsrahmenprogramms Mittel in Höhe von mehr als zehn Millionen Euro für das Dünnschicht-Solarzellen-Projekt „Scalenano“ bewilligt. 13 europäische Forschungsgruppen werden an der Weiterentwicklung der Chalkogenid-Solarzellentechnologie arbeiten. In Deutschland sind das Helmholtz-Zentrum Berlin (HZB) und die Freie Universität Berlin an dem europäischen Konsortium beteiligt. Das Ziel ist, die Produktionskosten deutlich zu senken und mit nanostrukturierten Materialien zugleich den Wirkungsgrad der Dünnschicht-Module zu erhöhen.

Unter den Chalkogeniden ist Kupfer-Indium-Gallium-Diselenid (CIGSe) das Material, welches den gegenwärtig höchsten Wirkungsgrad liefert. Bisher wird die Verbindung überwiegend mit einer vakuumbasierten Beschichtungstechnik in mikrometerdünnen Schichten auf Glas oder Folie aufgebracht. Ein Ziel der europäischen Zusammenarbeit ist es, neue umweltfreundliche Produktionstechniken zu entwickeln, die ohne Vakuum auskommen. Eine erhebliche Kostensenkung soll damit erreicht werden.

Mit neuen Material- und Bauelementkonzepten will man zugleich den Durchbruch hinsichtlich höherer Wirkungsgrade schaffen. Dafür kommen nanostrukturierte Materialien zum Einsatz. Mit der elektrochemischen Synthese von nanokristallinen Vorstufen, sogenannten Precursoren, und neuen Techniken, bei denen Nanopartikel ähnlich wie Tinte gedruckt werden, wollen die Forscher völlig neue Produktionswege erschließen. Damit dies nicht nur im Labormaßstab an einzelnen Solarzellen gelingt, sollen die Herstellungskonzepte zugleich für eine mögliche Hochskalierung auf größere Maßstäbe geprüft werden.

Die Projektpartner am Helmholtz-Zentrum Berlin werden vor allem an der Qualitätskontrolle und Prozessüberwachung arbeiten. Das HZB-Team um Dr. Thomas Unold entwickelt hierfür neuartige analytische Methoden zur Charakterisierung der Solarzellen während des Herstellungsprozesses. Damit wollen die Wissenschaftler die Qualität des Chalkogenid-Absorbermaterials verbessern. Mit den neuen Methoden soll auch eine hohe Ausbeute und ein großer Durchsatz bei der Hochskalierung gewährleistet werden.

In der neuen Forschungsstrategie sollen auch Dünnschicht-Absorbermaterialien mit nanostrukturierten sogenannten transparenten leitfähigen Oxiden (TCO) kombiniert werden. Zu diesem Schwerpunkt arbeitet das Team von Professorin Martha Lux-Steiner und Dr. Sophie Gledhill von der Freien Universität Berlin und dem Helmholtz-Zentrum Berlin an der Anpassung, Optimierung und optischen Modellierung von Chalkogenid-Solarzellen, die zusätzlich Zinkoxid-Nano-Arrays enthalten.

Die Berliner Forscher arbeiten außerdem an der nächsten Generation der Chalkogenid-Dünnschicht-Materialien, den sogenannten Kesteriten. Diese besitzen ähnliche Eigenschaften wie Kupfer-Indium-Gallium-Diselenid-Materalien, kommen jedoch ohne Indium aus, das relativ selten in der Erdkruste vorkommt.

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen am EMIL-Labor an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.