X-ray laser FLASH uncovers fast demagnetization process

Magnetic force microscope image of a 10 by 10 micron sample<br />showing the magnetic domains' labyrinthine structure.<br />

Magnetic force microscope image of a 10 by 10 micron sample
showing the magnetic domains' labyrinthine structure.
© Bastian Pfau

With the help of free-electron laser FLASH at the Helmholtz Research Centre DESY, an international team of researchers has recently described a most surprising effect that can result in faster demagnetization in ferromagnetic materials. This effect could be key to the continued miniaturization and acceleration of magnetic storage. Now, Prof. Dr. Stefan Eisebitt of the Helmholtz Zentrum Berlin (HZB) and TU Berlin and his team have published their findings in the current issue of the scientific journal Nature Communications (DOI 10.1038/ ncomms2108).

"The ability of a light pulse to effect localized changes to a material's magnetization is a well-known fact, but not until now have we been able to more closely observe the process, which has led to the discovery of a new mechanism," explains Stefan Eisebitt. This is because most ferromagnetic materials consist of a number of individual, differently oriented magnetic domains. "When bombarded with laser light, free electrons rush through the material, moving from one domain into an oppositely magnetized domain. These electrons carry part of the magnetization through the sample and are thus able to destroy the localized magnetization," explains TU Berlin's Bastian Pfau, junior researcher and the study’s primary author.

The TU Berlin, HZB, and DESY researchers along with their colleagues from the Universities of Hamburg and Paris, and from six other research institutes including SLAC – the Stanford Linear Accelerator Center in the US – all conducted their experiments at DESY's Hamburg-based free-electron laser FLASH. Previously, they had characterized the domain patterns at HZB's own synchrotron radiation source BESSY II and at Paris-based SOLEIL where they examined samples obtained from cobalt-platinum thin films whose nanoscale magnetic domains form labyrinthine structures. "Our results further demonstrate that the position and density of magnetic domain boundaries can influence demagnetization behavior," explains Stefan Eisebitt. "Our work has set the stage for a new approach to developing faster and smaller-sized magnetic storage specifically by building magnetic nanostructures."

AR


You might also be interested in

  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Spintronics: X-ray microscopy unravels the nature of domain walls
    Science Highlight
    28.08.2023
    Spintronics: X-ray microscopy unravels the nature of domain walls
    Magnetic skyrmions are tiny vortices of magnetic spin textures. In principle, materials with skyrmions could be used as spintronic devices, for example as very fast and energy-efficient data storage devices. But at the moment it is still difficult to control and manipulate skyrmions at room temperature. A new study at BESSY II analyses the formation of skyrmions in ferrimagnetic thin films of dysprosium and cobalt in real time and with high spatial resolution. This is an important step towards characterising suitable materials with skyrmions more precisely in the future.