Forscher zeigen mit Berechnungen, dass kompakte Laser-Plasma-Beschleuniger möglich sind

Ultrakurze Pulse aus kohärentem Röntgenlicht sind ein fantastisches Mittel, um Einsichten in atomare oder molekulare Reaktionen zu gewinnen. In Freien-Elektronen-Lasern können solche Pulse im Femtosekundenbereich (10 -15 sek) erzeugt werden. Doch bislang sind dafür enorme Beschleuniger nötig, die nur an wenigen Großforschungseinrichtungen der Welt zur Verfügung stehen.  An einer kompakteren Alternative arbeitet Dr. Atoosa Meseck vom HZB-Institut für Beschleunigerphysik mit Kollegen aus dem HZB und anderen Forschungseinrichtungen. Nun haben sie einen Bauplan für eine kompakte Quelle für kohärente kurzwellige Strahlung entworfen und berechnet. Dieses Ergebnis veröffentlichten sie in der Fachzeitschrift "Physical Review".

Das Prinzip klingt ganz einfach: In einem heißen Plasma  erzeugt ein Laserstrahl „Wellen“, die die Elektronen bis auf nahezu Lichtgeschwindigkeit beschleunigen. Allerdings erhalten die so beschleunigten Elektronen damit unterschiedlich viel Energie, so dass dieRöntgenpulse, die sie abgeben, nicht kohärent sind.

Andreas Maier vom CFEL bei DESY hat nun mit Meseck und weiteren Kollegen berechnet, wie dieses Problem gelöst werden könnte: Der Schlüssel steckt in der Anordnung der so genannten Undulatoren. Diese Undulatoren bestehen aus einer Reihe von Dipolmagneten, die die Elektronen auf eine Art Slalombahn zwingen. Durch die geschickte Wahl der Abstände und Feldstärken dieser Geräte sowie durch ein geeignetes Elektronenstrahlführungssystem lässt sich  die lokale Energiebandbreite deutlich verringern, so dass die Elektronen nahezu gleiche Energie besitzen und kohärente Röntgenpulse abgeben. Damit haben die Beschleunigerexperten einen Weg zu einem kompakten „Freie-Elektronen-Laser“ aufgezeigt.

„Wir verfolgen die Idee eines Laser-getriebenen Plasma-Beschleunigers schon seit einigen Jahren, zuerst sind wir dafür fast ausgelacht worden. Daher bin ich ganz stolz, dass nun auch andere Experten erkennen, dass dies eine durchaus interessante Idee und wie ich glaube, auch eine machbare Idee ist“, sagt Atoosa Meseck. Auf die Ergebnisse einer experimentellen Arbeitsgruppe, die diese Idee nun überprüfen wird, sind alle Beteiligten sehr gespannt.

Mehr Informationen:

http://prx.aps.org/abstract/PRX/v2/i3/e031019

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.